Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра оптики и биофотоники

Изучение температурной зависимости показателя преломления жировой ткани рефрактометрическим методом в широком диапазоне длин волн

АВТОРЕФЕРАТ БАКАЛАВРСКАЯ РАБОТА

студента(ки) <u>4</u> курса <u>434</u> группы

направления 03.03.02 «Физика»

физического факультета

Корчевской Анастасии Андреевны			
Научный руководитель			
профессор, д. ф-м.н		Тучин В.В.	
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия	
Зав. кафедрой:			
профессор, д. ф-м.н		Тучин В.В.	
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия	

Введение

Актуальность работы. В настоящее время в литературе представлено мало данных для показателя преломления жировой ткани в широком диапазоне длин волн. В ходе работы полученные данные могут стать основой для дальнейшего изучения температурной зависимости показателя преломления жировой ткани и ее компонентов.

Для эксперимента брался образец абдоминальной жировой ткани свиньи с брюшной области. Толщина среза жировой ткани составляла 500 - 700 мкм. Измерения проводились для 5 образцов, в возрасте около 7 - 8 месяцев.

Измерения в данной работе проводились на многоволновом рефрактометре Аббе M2-1550 (Atago) [1].

В экспериментах использовался срез жировой ткани и вытопленный жир. Начальная температура измерений была равна комнатной температуре и составляла около 22°С - 26°С. В ходе эксперимента температура призмы, на которой находился образец, повышалась до 50°С с шагом повышения 2°С. Длительность эксперимента составляла около 4 часов.

Целью работы являлось изучить дисперсионную и температурную зависимость показателя преломления жировой ткани рефрактометрическим методом в широком диапазоне длин волн. Сравнить температурную зависимость показателей преломления среза жировой ткани и капли вытопленного жира.

Структура и объем работы. Выпускная квалификационная работа состоит из введения, основной части, состоящей из 6 глав, заключения и списка используемой литературы. Всего в работе 61 страница.

Основное содержание работы

Во введении, которое служит первой главой работы, описан основной метод работы, практическая значимость и сформированы цели работы.

Во второй главе представлено подробное описание показателя преломления и его особенности, методы измерения показателя преломления с различными установками.

В третьей главе говорится о рефрактометре Аббе, об особенности его работы и модернизации прибора.

В четвертой главе рассказывается о главном образце, о свиной жировой ткани используемом в эксперименте, о его функциях, составе химическом и физиологическом, а так же о температурном фазовом переходе.

В состав жировой ткани входят белки, жиры, вода и в небольших количествах липоиды, минеральные вещества, пигменты, витамины.

В таблице 1 приведен химический состав жировой ткани свиньи.

Таблица 1.

Состав ткани	Содержание основных компонентов, %			
	в околопочечной	в сальнике	в шпике	
	ткани			
Вода	2,61	6,84	7,15	
Белок	0,34	1,56	1,7	
Жир	97	91,6	91,15	

В таблице 2 представлено содержание ПНЖК в свином жире:

Таблина 2.

ПНЖК	Содержание, %
Арахидоновая	3 - 4
Линоленовая	0,6 - 0,8
Олеиновая	37 - 44
Линолевая	8 - 10

В таблице 3 представлена ПНЖК в свином жире при термической обработке[2]:

Таблица 3.

ПНЖК	Температура плавления, °С	Температура кипения, °С
Арахидоновая	- 49,5	169 - 171
Линоленовая	- 11,3	184 (при 4 мм. рт. ст.)
Олеиновая	16,3	360 (при 10 мм. рт. ст.)
Линолевая	- 5	229(при 16 мм. рт. ст.)

Температура фазового перехода зависит от природы боковых цепей жирных кислот[3].

В **пятой главе** представлены измерения, которые проводились с помощью многоволнового рефрактометра Аббе M2-1550 (Atago). Данный рефрактометр позволяет проводить измерения показателя преломления в диапазоне длин волн от 450 нм до 1550 нм при помощи использования интерференционных фильтров. Точность измерений прибора составляет \pm 0,0002[1].

Так же в этой главе описан экспериментальный показатель преломления ля воды. В частности, зависимость длины волны показателя преломления определяет спектральную зависимость показателя преломления ткани интерстициальной жидкости, что в свою очередь определяет зависимость длины волны рассеивающих свойств тканей. Кроме того, показатель преломления воды зависит от температуры.

Зависимость показателя преломления воды в видимом и ближнем инфракрасном спектральных областях была представлена в качестве уравнения 1.

$$n(\lambda) = 1.3199 + \frac{6878}{\lambda^2} - \frac{1.132 \cdot 10^9}{\lambda^4} + \frac{1.11 \cdot 10^{14}}{\lambda^6},\tag{1}$$

где -длина волны, нм. В ближнем УФ, видимом и ближнем инфракрасном спектральных областях зависимость показателя преломления воды от длины волны может быть описана с помощью уравнения 2.

$$n(\lambda) = 1.31848 + \frac{6.662}{\lambda [nm] - 129.2}.$$
 (2)

Учет температурной зависимости показателя преломления воды очень важен для биомедицинской оптики. В таблице 4 показана зависимость показателя преломления воды от температуры и длины волны [4].

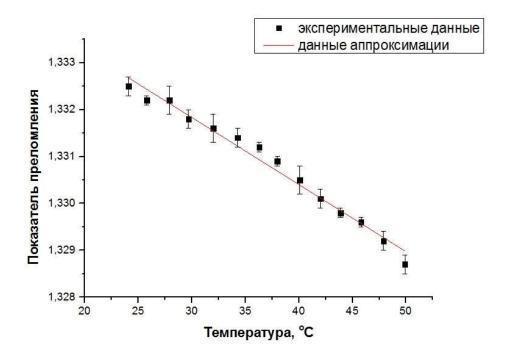


Рис. 1. Зависимость показателя преломления воды от температуры.

Уменьшение показателя преломления воды при повышении температуры связанно с уменьшением ее плотности.

Таблица 4. Показатель преломления воды в зависимости от температуры и длины волны

Температура,	Длины волн							
°C	226.5,нм	226.5,нм 361.05,нм 404.41,нм 589,нм 632.8,нм 1013.98,нм						
0	1.3945	1.3489	1.3441	1.3343	1.3330	1.3261		
10	1.3942	1.3487	1.3439	1.3341	1.3328	1.3259		
20	1.3934	1.3479	1.3431	1.3334	1.3321	1.3252		

30	1.3921	1.3468	1.3420	1.3323	1.3310	1.3242
40	1.3905	1.3454	1.3406	1.3309	1.3297	1.3230
50	1.3885	1.3437	1.3390	1.3294	1.3281	1.3214
60	1.3864	1.3418	1.3371	1.3276	1.3263	1.3197
70	1.3839	1.3397	1.3351	1.3256	1.3244	1.3178
80	1.3813	1.3375	1.3328	1.3234	1.3222	1.3157
90	1.3785	1.3350	1.3304	1.3211	1.3199	1.3135
100	1.3755	1.3324	1.3278	1.3186	1.3174	1.3111

Шестая глава посвящена обобщению полученных результатов, а так же их обсуждению. Приводятся данные для объекта исследования свиного абдоминального жира. В таблицах 5, 6 и 7 приведен температурный инкремент показателя преломления и начальное значение показателя преломления для жирового среза и вытопленного свиного жира. Температурная зависимость показателя преломления в виде линейной функции [4]:

$$n(T) = n_0 + \frac{dn}{dT} \times T. (3)$$

Таблица 5. Начальное значение и температурный инкремент показателя преломления жирового среза для интервала температур.

Жировой срез до «излома» зависимости

Длина волны	n_0	Стандартная ошибка, <i>n</i> ₀	$\frac{dn}{dT}, \times$ $10^{-4} \circ \mathbb{C}^{-1}$	Стандартная ошибка, × 10 ⁻⁴ °C ⁻¹
480	1,5342	0,0022	-19,1	0,76
489	1,5217	0,0038	-15,2	0,13
546	1,52400	0,0012	-17,6	0,40
589	1,5278	0,0038	-19,6	0,13
644	1,5174	0,0116	-16,6	0,40
656	1,5266	0,0019	-2,00	0,16
680	1,5184	0,0045	-17,9	0,15
930	1,5098	0,0097	-15,9	0,33
1100	1,5081	0,0102	-16,2	0,35
1300	1,5025	0,0131	-15,9	0,45
1550	1,4968	0,0157	-15,3	0,53

Таблица 6. Начальное значение и температурный инкремент показателя преломления жирового среза для интервала температур.

Жировой срез после «излома» зависимости

Длина волны	n_0	Стандартная ошибка, n_0	$\frac{dn}{dT}$, \times 10^{-4} °C $^{-1}$	Стандартная ошибка, × 10 ⁻⁴ °C ⁻¹
480	1,4953	0,0011	-6,99	0,26
489	1,4921	0,0013	-6,18	0,30
546	1,4879	5,5440	-6,19	0,13
589	1,4856	4,6799	-6,12	0,11
644	1,4830	0,0019	-6,17	0,45
656	1,4834	6,9718	-6,28	0,16
680	1,4812	0,0016	-6,26	0,37
930	1,4801	4,7612	-6,64	0,11
1100	1,4765	7,2642	-6,40	0,17
1300	1,4721	0,0011	-6,52	0,25
1550	1,4697	9,4123	-6,93	0,22

Таблица 7. Начальное значение и температурный инкремент показателя преломления вытопленного свиного жира для интервала температур.

Вытопленный свиной жир

Длина	n_0	Стандартная	$\frac{dn}{dT}$, \times	Стандартная
волны		ошибка,	10^{-4} °C $^{-1}$	ошибка ×
		n_0		10 ⁻⁴ °C ⁻¹
480	1,4983	0,0004	-7,63	0,10
489	1,4972	4,7842	-7,50	0,12
546	1,4928	8,9723	-7,47	0,23
589	1,4900	8,1024	-7,30	0,21
644	1,4877	8,1332	-7,27	0,21
656	1,4863	7,6199	-7,04	0,20
680	1,4856	7,5940	-7,24	0,20
930	1,4815	8,3854	-7,16	0,22
1100	1,4787	7,4602	-7,05	0,19
1300	1,4749	6,7351	-7,38	0,17
1550	1,4708	7,6379	-7,36	0,20

В заключении приводится перечень основных выводов, полученных в результате проведенных исследований, и кратко суммируются основные результаты, полученные при выполнении данной работы.

Заключение

В данной выпускной квалификационной работе были проведены измерения показателя преломления среза жировой ткани и капли вытопленного жира в широком диапазоне длин волн с использованием многоволнового рефрактометра.

В ходе выполнения работы автор экспериментально убедился в том, что показатель преломления биоткани и ее компонентов зависит от множества факторов (температуры, длины волны падающего света, плотности, а также от молекулярного строения).

Были измеренны показатели преломления жира в видимой и ближней областях спектра, построены графики температурной и дисперсионной зависимости показателя преломления жировой ткани свиньи и вытопленного жира. Было рассчитано начальное значение и температурный инкремент показателя преломления вытопленного жира и среза жировой ткани для представления зависимости показателя преломления температуры в виде линейной функции.

Полученные данные могут стать основой для изучения взаимодействия оптического излучения с биотканями с учетом дисперсионной и температурной зависимостей показателя преломления ткани и ее компонентов.

Список литературы

- 1. Многоволновой рефрактометр М2-1550., Инструкция по эксплуатации.
- 2. Bashkatov Alexey N. ,GeninaElina A. Water refractive index in dependence on temperature and wavelength: a simple approximation.
- 3. Рогов И. А., Забашта А. Г., Казюлин Г. П. Технология мяса и мясных продуктов. Книга 1. М. 2009.
- 4. I.Yu. Yanina, A.P.Popov, A.V.Bykov, V.V. Tuchin, Monitoring of temperature-mediated adipose tissue phase transitions by refractive-index measurements. Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), edited by Janis Spigulis, Proc. of SPIE. 2014.