Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра физики открытых систем

Магнитно-управляемые микрополосковые СВЧ генераторы

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студентки 4 курса 431 группы

направления

03.03.03 «Радиофизика»

факультета нелинейных процессов

Филимоновой Екатерины Владимировны

Научный руководитель ведущий инженер кафедры теоретической физики физического факультеты СНИГУ	М.Б. Мысенко
Зав. кафедрой физики открытых систем	
профессор, д. ф. – м. н.	А. А. Короновский

Введение.

Одной из наиболее важных проблем современной твердотельной электроники является создание генераторов электромагнитных колебаний коротковолновой части СВЧ-диапазона. Особо актуальна эта проблема в миллиметровом диапазоне. Генераторы, созданные на основе диода Ганна, по совокупности параметров являются в настоящее время одним из лучших твердотельных СВЧ генераторов.

Для многих целей необходимы СВЧ генераторы, частота которых в широком диапазоне однозначно управляется изменением какого-либо внешнего фактора. Генераторы, частота которых управляется напряжением обратного смещения на полупроводниковом диоде,что приводит изменению емкости *p-n* перехода и частоты контура, получили название генераторов, управляемых напряжением (ГУН). Однако такие генераторы обычно имеют узкий диапазон перестройки и нелинейную зависимость частоты от управляющего напряжения. В этом отношении лучшими характеристиками обладают генераторы, управляемые магнитным полем (ГУМ). В таких генераторах в качестве резонатора используется сфера из железо-иттриевого граната (ЖИГ-сфера), резонансная частота которого пропорциональна величине приложенного к ЖИГ-сфере магнитного поля, что обеспечивает линейную зависимость частоты генерации от магнитного поля. Кроме того, такие генераторы могут обеспечить достаточно широкую полосу перестройки (до октавы и более).

Задачами данной дипломной работы являются теоретическое обоснование принципов работы и расчет (проектирование) перестраиваемых с помощью внешних магнитных полей генераторов на микрополосковых линиях с СВЧ-диодами (МПЛ-генераторов).

Основная часть.

1. Теоретические основы МПЛ генератора, управляемого магнитным полем.

Рассмотрим распространение электромагнитной волны (ЭМВ) в несимметричной МПЛ. Если последняя представляет собой систему без потерь с однородным диэлектриком бесконечных размеров, то в ней может распространяться квази-Т-волна. На практике диэлектрик имеет конечные размерыи потери неизбежны. Поэтому в реальных МПЛ структура поля ЭМВ отличается от структуры поля Т-волны. Тем не менее, наблюдается неплохое соответствие между результатами расчёта характеристик МПЛ, полученных в приближенииТ-волны, и данными измерений реальных МПЛ.

Характеристиками волноведущей системы являются скорость V распространения ЭМВи характеристическое сопротивление $Z_{\scriptscriptstyle 0}$, которые выражаются через погонные емкость $C_{\scriptscriptstyle 0}$ и индуктивность $L_{\scriptscriptstyle 0}$:

$$V = \frac{1}{\sqrt{L_0 C_0}}, \qquad Z_0 = \sqrt{\frac{L_0}{C_0}}. \tag{1}$$

В длинной линии скорость распространения электромагнитной волны равна скорости света в среде, заполняющей линию, т.е.

$$V = \frac{c}{\sqrt{\varepsilon \mu}}, \qquad Z_0 = \frac{\sqrt{\varepsilon \mu}}{c \cdot C_0}, \qquad (2)$$

где c — скорость света в вакууме, ε и μ — абсолютные диэлектрическая и магнитная проницаемости среды. Эти зависимости могут быть выражены также через относительные проницаемости ε_r и μ_r . Для МПЛ конечных размеров ε_r и μ_r заменяются их эффективными значениями $\varepsilon_{\it eff}$ и $\mu_{\it eff}$, учитывающими степень заполнения МПЛ диэлектриком.

Динамика намагниченности \vec{M} ферромагнетика в магнитном поле сучётом потерь описывается уравнением:

$$\frac{\partial \vec{M}}{\partial t} = -\gamma \left[\vec{M} \times \vec{H} \right] - \frac{\alpha}{\left| \vec{M} \right|} \left[\vec{M} \times \frac{\partial \vec{M}}{\partial t} \right], \tag{3}$$

где \vec{M} - удельный магнитный момент магнетика, α - параметр потерь, γ - магнитомеханическое отношение, \vec{H} - эффективное значение напряженности магнитного поля, действующего на магнитный момент в данной точке феррита. В общем случае \vec{H} - суперпозиция приложенного поля \vec{H}_0 ивнутренних полей, обусловленных кристаллографической анизотропией, обменными силами и размагничивающим полем [5, 6, 8].

Для простоты положим $\vec{H} = \vec{H}_0$ и рассмотрим намагниченный до насыщения феррит, в котором приложенное магнитное поле вызывает однородное по объему распределение намагниченности ($|\vec{M}| = const$). В случае, когда поле является суммой постоянного \vec{H}_0 и переменного \vec{h} полей ($\vec{H}_0 >> \vec{h}$ и $\vec{H}_0 \perp \vec{h}$), решение (3) для намагниченности — также сумма постоянного вектора намагниченности \vec{M}_0 , направленного по \vec{H}_0 , и переменного вектора \vec{m} . Такчто суммарный вектор намагниченности прецессирует вокруг \vec{H}_0 с частотой $\omega_H = \gamma H_0$. Вектора \vec{m} и \vec{h} связаны между собой соотношением $\vec{m} = \vec{\chi} \vec{h}$, где $\vec{\chi}$ - тензор ВЧ магнитной восприимчивости:

$$\vec{\chi} = \begin{vmatrix} \chi & j\chi_a & 0 \\ -j\chi_a & \chi & 0 \\ 0 & 0 & 0 \end{vmatrix}. \tag{4}$$

Здесь $\chi=\frac{\gamma\mu_{_0}\omega_{_H}}{\omega_{_H}^2-\omega^2},~\chi_{_a}=\frac{\gamma\mu_{_0}\omega}{\omega_{_H}^2-\omega^2},~\mu_{_0}$ - магнитная проницаемость вакуума.

Тензор ВЧ магнитной проницаемости $\ddot{\mu}$, связывающий переменные вектора магнитной индукции и напряженности магнитного поля, выражается через $\vec{\chi}$:

$$\vec{\mu} = 1 + 4\pi \vec{\chi} = \begin{vmatrix} \mu & j\mu_a & 0 \\ -j\mu_a & \mu & 0 \\ 0 & 0 & 1 \end{vmatrix}.$$
 (5)

Компоненты тензора имеют вид:

$$\mu = \frac{\omega_H (\omega_H + \omega_M) - \omega^2}{\omega_H^2 - \omega^2}, \quad \mu_a = \frac{\omega_M \omega}{\omega_H^2 - \omega^2},$$

где $\omega_{\scriptscriptstyle M} = \gamma 4\pi M_{\scriptscriptstyle 0}$, $\omega_{\scriptscriptstyle H} = \gamma H_{\scriptscriptstyle 0}$ - частоты переменного поля.

Таким образом, имеем зависимость магнитной проницаемости феррита от приложенного магнитного поля и от частоты ЭМВ, распространяющейся в ферритовой среде [9].

Постоянная распространения ЭМВ с частотой ω для феррита, подмагниченного в направлении, перпендикулярном направлению распространения, определяется в виде:

$$k = \omega \sqrt{\varepsilon \mu_0 \mu_r} \,, \tag{6}$$

где относительная магнитная проницаемость феррита μ_r на СВЧ выражается через компоненты тензора $\ddot{\mu}$:

$$\mu_{r} = \frac{\mu^{2} - \mu_{a}^{2}}{\mu} \ . \tag{7}$$

Итак, распространение ЭМВ в МПЛ на подложке из феррита будет зависеть от приложенных магнитных полей, способных изменять магнитную проницаемость ферритового материала. Влияние магнитных полей приведет к изменению длины ЭМВ и волнового сопротивления МПЛ. Изменятся также характеристики поглощения ЭМВ в линии. Если на ряде участков МПЛ приложено локальное магнитное поле, то характеристики ЭМВ на различных участках МПЛ изменятся неодинаково. Если приложенное магнитное поле сосредоточено в области, размеры которой меньше размеров МПЛ, будет иметь место аналог скачка волнового сопротивления МПЛ. Соответственно, волновые сопротивления в соседних областях МПЛ будут различными.

Таким образом, в основе метода перестройки частоты МПЛ-генератора с помощью магнитного поля лежит зависимость магнитной проницаемости ферритовых материалов от приложенного внешнего магнитного поля.

Длина электромагнитной волны λ , распространяющейся в среде с относительными проницаемостями \mathcal{E}_r , μ_r , связана с длиной волны λ_0 в свободном пространстве соотношением:

$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_r \mu_r}} \ . \tag{8}$$

Длина электромагнитной волны, распространяющейся в МПЛ, заполненной этой средой, связана с λ_0 таким же соотношением с учетом замены ε_r , μ_r на их эффективные значения $\varepsilon_{\it eff}$, $\mu_{\it eff}$, зависящие от геометрической длины L микрополосковой линии. Таким образом, частота f ЭМВ выражается в виде:

$$f = \frac{c}{2L\sqrt{\varepsilon_{eff}\mu_{eff}}},\tag{9}$$

то есть, для ферритовой подложки при постоянных L и $\varepsilon_{\rm eff}$ $f \sim \left[\mu_{\rm eff}(H)\right]^{\frac{1}{2}}$. Эта зависимость качественно объясняет влияние магнитного поля, приложенного к ферритовой подложке МПЛ-генератора, на частоту генерации. Таким образом, при постоянных размерах системы под действием внешнего магнитного поля изменяются частоты, на которых выполняются резонансные условия. Другими словами, происходит изменение эффективных размеров резонансной системы.

Проведенные расчеты и измерения в реальной системе позволили получить зависимости частоты и выходной мощности генератора на диоде Ганна от величины однородного магнитного поля, показанные на рис. 1. Значения напряженности магнитного поля даны в Гс, поскольку измерения поля проводились в воздушной среде с помощью измерителя магнитной индукции. Видна возможность перестройки МПЛ-генератора при различных направлениях магнитного поля: нормальном к плоскости подложки и перпендикулярной касательном ней В плоскости, направлению К распространения ЭМВ. Как видно из рис. 1(а), увеличение нормального магнитного поля от 0 до 1000 Гс не влияет на частоту генерации и выходную мощность МПЛ-генератора. При дальнейшем увеличении магнитного поля происходит перестройка частоты (с крутизной $10 \text{ м}\Gamma\text{ц}/\Gamma\text{c}$) и падение уровня СВЧ-мощности. Причём изменение мощности на 3dB от максимального значения достигается при величине магнитного поля 1650 Гс. В случае касательного подмагничивания частота генерации монотонно возрастает ($8 \text{ м}\Gamma\text{ц}/\Gamma\text{c}$) и при H=1000 Гс достигает максимума (рис. 1(6)).

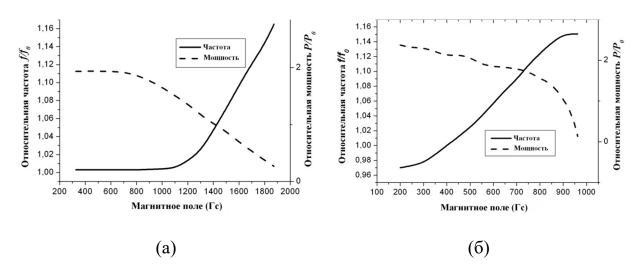


Рис.1. Зависимость мощности и частоты МПЛ-генератора на диоде Ганна от величины однородного магнитного поля — (а) поле, нормальное к ферритовой подложке; (б) поле, касательное к ферритовой подложке.

2. Принципы компьютерного моделирования и экспериментальные исследования МПЛ-генераторов на основе СВЧ-диодов.

Компьютерное исследованиевлияния однородных локальных магнитных полей на распространение ЭМВ в МПЛ на ферритовой подложке проводилось путем конструирования аналогичной модели генератора в электронном формате и сравнения параметров с реальной установкой посредством пакета программ машинного моделирования СВЧ устройств MicrowaveOffice в заданной полосе частот. Так как данный пакет не поддерживает работу с магнитными полями, то вместо магнитной системы возбуждения используется соответствующий эквивалент виде колебательной системы, показанный на рис. 2. Параметры L и C являются динамическими, т.к. изменение магнитного поля системы приводит к изменению резонансных свойств системы.

В реальной установке сигнал от генератора качающейся частоты распространяется в МПЛ и частично отражается от плоскости ее поперечного сечения, в которую внесено магнитное поле. Выделенная направленным детектором отраженная ЭМВ сравнивается по амплитуде с падающей. Измеренный КСВ служит характеристикой коэффициента отражения от плоскости приложения магнитного поля, т.е. величины неоднородности, внесенной магнитным полем в МПЛ. При расположении над МПЛ двух магнитных систем друг за другом характеристика зависимости КСВ от частоты будет иметь ряд минимумов на частотах, соответствующих резонансному поглощению мощности в резонаторе. Таким образом, по характеристике зависимости КСВ от частоты можно определить резонансные частоты системы.

Перед непосредственным исследованием влияния внешних магнитных полей на прохождение ЭМВ в МПЛ с ферритовой подложкой были проведены вспомогательные работы:

подбор ширины полоскового
проводника МПЛ на
соответствиеволновому
сопротивлению 50 Ом. Методика
подбора заключается в сравнении
уровней КСВ в заданной полосе
частот при различных значениях
ширины полоскового проводника

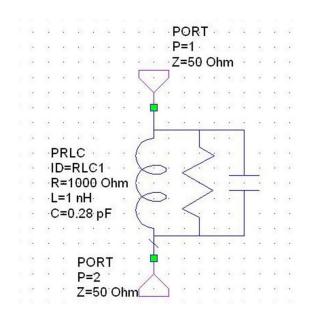


Рис.2 Колебательный контур (эквивалент магнитной системы) в MicrovaweOffice

МПЛ, нагруженной на 50-омное сопротивление. В результате оптимальное согласование получено для МПЛ с полосковым проводником шириной 0,6

мм (для подложки толщиной 1 мм из поликристаллического высокочистого феррита ЖИГ);

– измерение напряженности магнитного поля, создаваемого полюсными коническими наконечниками с различным числом дисковых самарий-кобальтовых магнитов (диаметром 0,8 см и длиной 1,5 см), расположенных на различных расстояниях от наконечников.

Рассмотрим эксперименты с макетами СВЧ-генераторов на МПЛ с магнитным управлением параметрами генерации. Исследовались МПЛгенераторы на подложке из поликристаллического высокоочищенного феррита. Резонансные системы включают в себя резонатор, ограниченный с одной стороны разомкнутым концом ΜПЛ низким c волновым сопротивлением, с другой – неоднородностью в виде отверстия в МПЛ для включения активного элемента и трансформатора волновых сопротивлений на 50-Омную выходную линию в виде плавного перехода. В качестве активных элементов используется лавинно-пролетный диод (ЛПД тип АА707В) и диод Ганна (тип AA715D). В 3-сантиметровом диапазоне эти имеют максимальную выходную мощность при высоких эксплуатационных параметрах.

Исследуемый генератор подключается согласно блок-схеме (рис. 3).

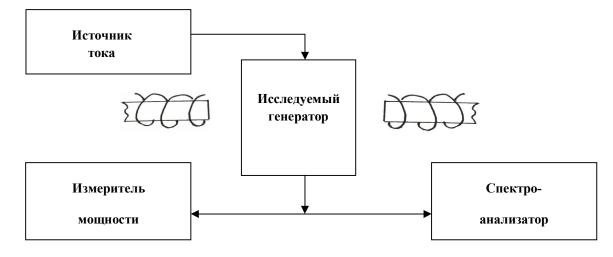


Рис. 3. Блок-схема установки для динамических измерений параметров МПЛ-генератора.

Напряжение смещения OT источника питания подается непосредственно на активный элемент генератора (анод-катод диода). При ЭТОМ разрыв цепи ПО постоянному току \mathbf{c} выходом генератора осуществляется емкостным разрывом проводника МПЛ в месте подключения коаксиально-микрополоскового перехода. Генерируемые колебания передаются через микрополосково-коаксиальный переход и коаксиальный тройник на измеритель мощности (ЕРМ-РЕ4416А) и анализатор спектра (PSAE4446A). Для исследований перестройки частоты МПЛ-генератора путем изменения эффективных размеров резонансной системы МПЛгенератор помещается в поле электромагнита.

Спроектированный макет управляемого МПЛ-генератора показан на рис.4.

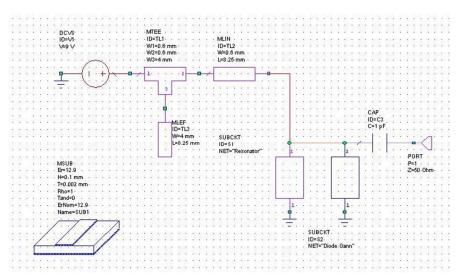


Рис.4. Макет электрической схемы МПЛ-генератора с использованием диода Ганна в качестве активного элемента

В соответствии с описанным выше методом были измерены параметры генераторов на МПЛ с ферритовым заполнением с одним активным элементом (диодом Ганна или ЛПД).

Следует отметить, что расчет генераторов на диодах Ганна затруднен приблизительным характером данных как о параметрах эквивалентной схемы диода, так и о параметрах эквивалентной схемы колебательной системы, а также узла крепления диода (особенно на высоких частотах). Поэтому для практического исследования генератора в среде Microwaveoffice в качестве

активного элемента (диода Ганна) применяется набор параметров диода в виде файла данных и включенных в подсхему под названием "DiodeGann".

Заключение.

Компьютерное моделирование экспериментальных исследований МПЛ-генераторов на основе СВЧ-диодов проводилось с помощью пакета программ машинного проектирования СВЧ-устройств МістоwaveOffice. Эксперименты, проведенные с изготовленными образцами, позволили изучить динамические свойства СВЧ-генераторов, состоящих из МПЛ и активного элемента. Взаимодействие этих элементов осуществлялось посредством ферромагнитной подложки, свойства которой изменялись за счет воздействия магнитного поля. Спектральные характеристики и выходная мощность МПЛ-генераторовзависели от диэлектрической и магнитной проницаемостей.

В данной работе было проанализировано влияние магнитного поля на параметры МПЛ-генератора и создан электронный макет установки. Сравнение работы реального генератора с результатами полученными с помощью электронного макета установки, спроектированного с помощью MicrowaveOffice, показало, что проектирование СВЧ МПЛпакета генераторов является серьезной проблемой и требует либо создания нового программного продукта, либо использования всяческих ухищрений стандартном пакете, КТОХ соответствие полученных результатов c экспериментом наблюдается.

Список использованной литературы.

- 1. К. Гупта. Машинное проектирование СВЧ устройств. 1997
- 2. Г.И. Веселов, Е.Н. Егоров. Микроэлектронные устройства СВЧ. 1988
- 3. Е.Е. Дмитриев. Основы моделирования в MicrowaveOffice 2014 (на примерах).
- 4. Разевиг В.Д. и др. Проектирование СВЧ устройств с помощью MicrowareOffice. 2013.
- 5. Щука А. А. Электроника. Учебное пособие / Под ред. проф. А. С. Сигова, СПб.: БХВ-Петербург, 2011, с.800.
- 6. G. O. Young, Synthetic structure of industrial plastics (Book style with paper title and editor)," in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 15–64.
- 7. J. D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, and S.N. Stitzer, Ferrite devices and materials," IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp.721-737, Mar. 2002.
- 8. Веселов Г.И. идр. Микроэлектронные устройства СВЧ, М: Выс-шая школа, 1988, с.280.
- 9. Егунов М. С., Воторопин С. Д. ОАО «НИИПП», г. Томск, Россия. Перестраиваемый генератор на диоде Ганна 5-мм диапазона. 2010.