### Министерство образования и науки Российской Федерации

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г ЧЕРНЫШЕВСКОГО»

Кафедра общей и неорганической химии

# Иммобилизация пероксидазы хрена на полиэлектролитные слои

# АВТОРЕФЕРАТ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ БАКАЛАВРА

студентки 4 курса

Института химии СГУ

направления

04.03.01 - Химия

Института химии

Балкаевой Гульсары Галимжановны

Научный руководитель

к.х.н., доцент

dy

Н. А. Бурмистрова

подпись, дата

Зав. кафедрой д.х.н., проф.

С.П. Муштакова

#### **ВВЕДЕНИЕ**

Актуальность выпускной квалификационной работы. Разработка новых ферментативных систем позволяет усовершенствовать старые и предложить новые варианты анализа для целей здравоохранения и охраны окружающей среды, а также является одним из наиболее активно развивающихся направлений современной биотехнологии, потому что именно ферментативные методы обеспечивают высокочувствительное и селективное определение физиологически активных веществ. Поэтому поиск ферментов для аналитической биотехнологии является актуальной задачей.

Одним из наиболее широко распространенных ферментов, интерес к изучению которых с годами не ослабевает является пероксидаза. Пероксидаза — железосодержащие ферменты из класса оксиредуктаз, которые контролируют рост растений и их развитие. Уникальные свойства этого фермента обусловливают его применение в медицине, науке и технике

Хотя пероксидазы обнаруживаются в тканях практически всех растений, в настоящее время основным источником коммерчески доступной пероксидазы являются корни хрена.

**Цель и задачи исследования.** Целью исследования является сорбция пероксидазы хрена на полиэлектролитные слои по технологии послойного нанесения для возможного их применения в аналитической практике в качестве активных компонентов биосенсоров. Для достижения поставленной цели необходимо решить следующие **задачи**:

- отработать методику иммобилизации пероксидазы хрена на слои полиэлектролита;
- осуществить выбор оптимального цветового канала для регистрации окраски, развивающейся в результате ферментативной реакции в присутствии хромогенного субстрата;
- установить условия нанесения бислоя полиэлектролит/пероксидаза хрена;

- изучить сорбцию пероксидазы хрена на поверхность полистирола и стекла.

**Методы исследования.** Для решения поставленных в работе задач применяли иммунохимический метод анализа (твердофазный иммунохимический анализ на полистирольных планшетах).

Структура и объем работы. Работа состоит из введения, двух глав, заключения, списка правил по технике безопасности и списка литературы. Работа изложена на 48 страницах, содержит 20 таблиц, 16 рисунков, список литературы из 60 наименований.

#### ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулированы цель и задачи исследования.

#### Глава 1. Обзор литературы

В данной главе представлен обзор литературы, в котором рассмотрены общие сведения о структуре и свойства пероксидазы хрена, описание реакционного цикла гем-содержащих пероксидаз и их классификация, роль кальция в структуре и активности растительных пероксидаз. Приведены основные методы иммобилизации ферментов, выбор носителей и способа иммобилизации пероксидазы хрена на примере иммобилизация на кальций-альгинатном носителе. Рассмотрена суть методики технологии послойного нанесения, процесс создания пленок.

#### Глава 2. Экспериментальная часть

Данная глава содержит описание реагентов, используемых для проведения экспериментов. Описана методика технологии послойного нанесения.

#### Подбор оптимального цветового канала и концентрации пероксидазы хрена

Детектируемым сигналом пероксидазы хрена (ПХ) в пробе послужила визуально детектируемая голубая окраска пятен на лунках, образующихся после пропускания хромогенного субстрата на последней стадии проведения анализа. Голубая окраска пятен обусловлена образованием продукта ферментативного окисления хромогенного субстрата 3,3',5,5'-тетраметилбензидина пероксидом водорода, согласно нижеприведённой схеме (рис. 1):

$$H_3C$$
  $H_2N$   $H_3C$   $H_2N$   $H_3C$   $H_2N$   $H_3C$   $H_3C$   $H_3C$   $H_4C$   $H_4C$ 

Рис. 1 Ферментативная реакция, сопровождающаяся появлением окрашенного продукта

Исследования показали, что в исследуемом диапазоне концентраций ПХ наблюдаются яркие пятна с концентрацией 1 мкг/мл, 0,1 мкг/мл. Интенсивность окраска развивалась в течение 2,5 минут (0,05 мкг/мл), что является достаточной для визуального детектирования (рис. 2)

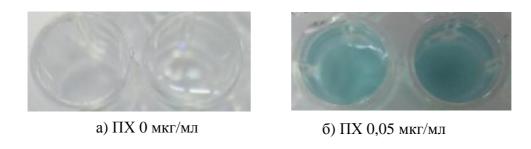



Рис.2 Вид лунок при определении  $\Pi X$  в модельных растворах: а) «холостая» проба (в отсутствие  $\Pi X$ ); б) в присутствие  $\Pi X$  0,05 мкг/мл.

Для количественной интерпретации получаемых результатов в случае применения ПХ в качестве метки проведен выбор оптимального цветового канала для регистрации окраски пятен с использованием цифрового фотоаппарата. Исследовано 2 цветовые модели: RGB и HSB.

Как видно из рис. 3, бо́льшую разность между окраской фона лунки (ПХ 0 мкг/мл) и окрашенным пятном имеет параметр R по сравнению с параметром S. Параметры B, G и B (НВS) не позволяют оценить аналитический сигнал. Цветовая компонента R выбрана нами для дальнейших исследований.

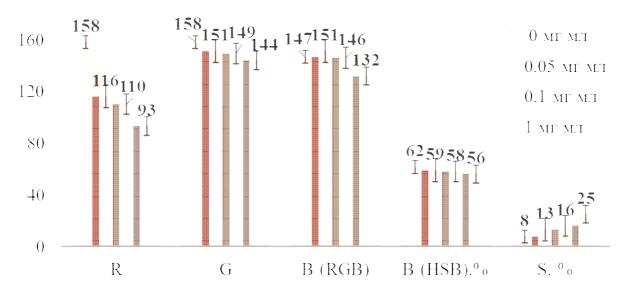



Рис. 3 Влияние концентраций пероксидазы хрена на изменение параметров R, G, B (RGB), S и B (HSB)

#### Подбор оптимального условия нанесения бислоя полиэлектролит/ПХ

Для реализации методики были выбраны следующие полиэлектролиты: полиэтиленимин (ПЕИ), полистиролсульфанат (ПСС), полиаллиламин гидрохлорид (ПААГХ). На рис. 4 представлен вид лунок после нанесения бислоя полиэлектролит/ПХ для трех использованных полиэлектролитов.

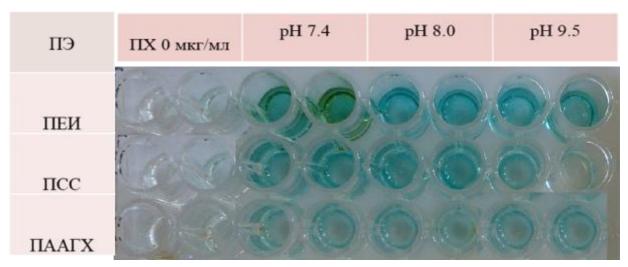



Рис. 4 Вид лунки при нанесении бислоев (pH 7,4 - 9,5): а) полиэтиленимин /пероксидаза хрена, б) полистиролсульфанат /пероксидаза хрена, в) полиаллиламин гидрохлорид /пероксидаза хрена.

Как видно из рис.5 наилучшая сорбция наблюдалась при использовании полиэлектролита ПЕИ при рН 7.4. Для дальнейших экспериментов были выбраны условия: полиэлектролит ПЕИ в ФСБ (рН 7.4).

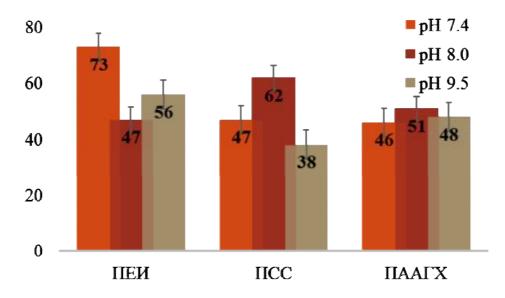



Рис. 5 Влияние полиэлектролитов и рН среды на изменение параметра R Изучение сорбции ПХ на поверхность полистирола

В ходе работы провели 8 параллельных экспериментов. Из табл. 1 видим, что на лунках предварительно очищенных ПАБ наблюдается детектируемая голубая окраска с вероятностью 50%. (рис. 6).

Таблица 1. Определение сорбции ПХ на поверхность

| ПХ 0 мкг/мл |          | ПХ 0,05 мкг/мл |         |
|-------------|----------|----------------|---------|
| 0           | ПАБ      | 0              | ПАБ     |
| «-»100%     | «-» 100% | «-» 100%       | «+» 50% |

<sup>+</sup>Положительный результат, окраска присутствует;

<sup>-</sup> Отрицательный результат, окраска отсутствует.

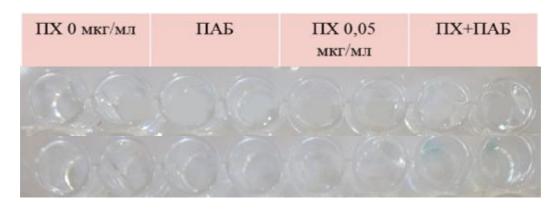



Рис. 6 Вид лунок при определении сорбции ПХ на пластиковую поверхность

Но сравнивая числовые значения (рис. 7) можно сделать вывод, что разность значений входит в величину погрешности.

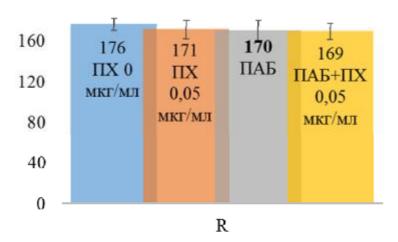



Рис. 7 Значение параметра R

Таким образом, ПХ не сорбируется на поверхность полистирола

#### Нанесения бислоя ПХ/ПЕИ на поверхность полистирола

Следующим этапом стала реализации методики послойного нанесения на поверхность полистирола. Пример полученных результатов представлен на рис. 8.

| ПХ 0 мкг/мл | ПЕИ | ПЕИ+ПХ 0,05<br>мкг/мл | ПАБ+ПХ<br>0,05 мкг/мл |
|-------------|-----|-----------------------|-----------------------|
| ( Who       | 00  | 10/0/                 |                       |

Рис. 8 Вид лунок при моделировании технологии послойного нанесения

Из диаграммы (рис. 9) видно, что там, где моделировали систему послойного нанесения, значительное изменение окраски. В то время как на лунках, обработанные ПАБ, этот эффект не наблюдается, что говорит о реализации данной технологии на поверхность полистирола.

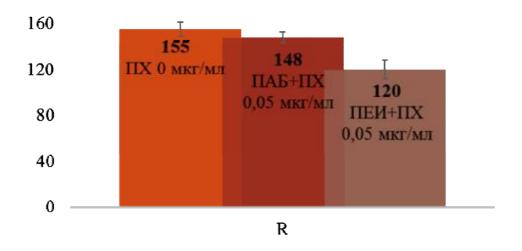



Рис. 9 Значение параметра R

## Изучение сорбции ПХ на стеклянную поверхность

Для исследования сорбции ПХ на стеклянную поверхность провели ряд параллельных экспериментов: на одну пару капилляров наносили ПХ, на следующие — обрабатывали ПАБ, а на последние пара капилляр моделировали технологию послойного нанесения (табл. 2).

Таблица 2. Послойное нанесение на стеклянные капилляры

| № капилляра  |     |        |
|--------------|-----|--------|
| С ПХ, мкг/мл |     |        |
| 0,05         | 0,1 | Слой   |
| 1            | 2   | ПХ     |
| 3            | 4   | ПАБ/ПХ |
| 5            | 6   | ПЕИ/ПХ |

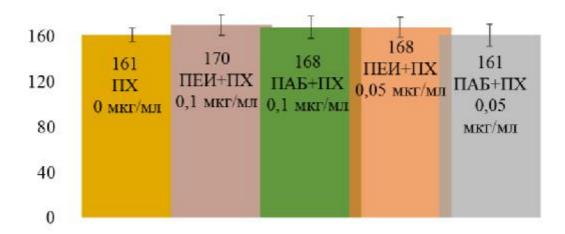



Рис. 10 Значение параметра R

Из рис. 10 видим, что значение незначительное и входит в величину погрешности. В данных условиях судить о сорбции ПХ на стеклянную поверхность невозможно.

#### ВЫВОДЫ

- 1. Проанализирована литература, посвященная иммобилизации пероксидазы хрена на полиэлектролитные слои по технологии послойного нанесения. Выявлены преимущества иммобилизованных ферментов перед нативными.
- 2. Определены оптимальные условия иммобилизации пероксидазы послойного нанесения хрена методом полиэлектролитов ЛУНКИ полистирольного планшета. Подобрана оптимальная концентрация пероксидазы хрена, выбран цветовой канал для регистрации окраски, развивающейся в результате ферментативной реакции с хромогенным субстратом, а также условия нанесения бислоя полиэлектролит/пероксидаза хрена.
- 3. Показано, что пероксидаза хрена практически не сорбируется на поверхности полистирола и стекла. Технология послойного нанесения на полиэлектролит позволяет провести иммобилизацию пероксидазы хрена