# Министерство образования и науки РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра физической химии

## Влияние концентрации углерода в активной массе отрицательного электрода свинцово-кислотного аккумулятора на его разрядные характеристики АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 4 курса Института химии СГУ направления 04.03.01 – Химия

Института химии

Щегловой Яны Алексеевны

| Научный руководитель        |                      |
|-----------------------------|----------------------|
| Кандидат хим. наук, доцент  | <br>М.М. Бурашникова |
|                             |                      |
|                             |                      |
| Зав. кафедрой               |                      |
| доктор хим. наук, профессор | И.А. Казаринов       |

#### **ВВЕДЕНИЕ**

В настоящее время среди аккумуляторных систем первое место занимает свинцово-кислотный аккумулятор (СКА) на долю которого приходится не менее 80-85% рынка вторичных источников тока. СКА имеют прочные позиции в таких областях техники, как транспорт (наземный, морской, авиационный), атомная и тепловая энергетика, системы связи, военная техника. Сегодня практически все аккумуляторы емкостью выше 500 являются свинцово-кислотными. Основной мировой тенденцией развития СКА является переход на их герметизированное исполнение. Это значительно увеличить срок службы циклируемость. позволяет И Современные стационарные герметизированные СКА имеют срок службы 15-20 лет, а циклируемые аккумуляторы – ресурс до 1500-2000циклов. Применение герметизированных аккумуляторов позволяет снизить скорость газовыделения в режиме постоянного подзаряда до  $0.3 \cdot 10^{-3}$  см<sup>3</sup>/мин·А·ч, а саморазряд – до 1-3% в месяц. Герметизированные СКА не требуют специального обслуживания в составе батареи и позволяют исключить ряд вспомогательных систем. Они безопасны в эксплуатации, имею высокое качество энергии и сохраняют самую низкую стоимость (0.2 евро/Вт·ч).

Основные усилия исследователей сосредоточены на разработке ГСА для новых видов транспорта (электромобили и гибридные электромобили), что обещает экономию топлива и экологическую чистоту [1].. Прогресс в этом направлении не обошел и такие области, как телекоммуникация и электроснабжение удаленных районов [2].

В настоящее время **нерешенной является такая проблема** ГСА, как высокоскоростная частично зарядная нагрузка, что особенно сильно проявляется при использовании ГСА в автомобилях нового поколения. В условиях высокоскоростного заряда и постоянного недозаряда (high-rate partial-state-of charge (HRPSoC)) СКА происходит необратимая сульфатация отрицательной активной массы (эффект преждевременной потери

емкости PCL-3), что наряду с такими явлениями как коррозия

положительных решеток, рост сопротивления контактного коррозионного

слоя (эффект PCL-1), оплывание положительной активной массы (эффект

PCL-2) значительно ограничивает срок службы ГСКА.

Актуальным направлением для решения проблемы необратимой

сульфатации отрицательной активной массы является поиск добавок в

активную массу, в частности добавок различных типов углерода [3-5].

Целью данного исследования явилось изучения влияния концентрации

добавок углерода в активную массу отрицательного электрода на его

разрядные характеристики.

Данная работа состоит из двух глав.

Глава 1: Литературный обзор

Глава 2: Экспериментальная часть

#### Основное содержание работы

#### 1 Объекты исследования.

Объектами исследования являются отрицательные электроды свинцовокислотного аккумулятора с различными углеродными добавками. В качестве добавок для исследования влияния на электрохимические свойства отрицательной активной массы (ОАМ) свинцово-кислотных аккумуляторов были выбраны: ГАК-2, RFL-99,95, НСУ с 0.5% 1% и 1.5% и 2% содержанием углерода.

Варианты состава ОАМ приведены в таблице 3:

Таблица 3-Варианты приготовленных ОАМ

| № варианта | Тип углеродной добавки | Процентное содержание |  |  |
|------------|------------------------|-----------------------|--|--|
|            |                        | %                     |  |  |
| 1          | Без «С» контрольный    | -                     |  |  |
|            | вариант                |                       |  |  |
| 2          | ГАК-2                  | 0.5                   |  |  |
| 3          | RFL-99,95              | 0.5                   |  |  |
| 4          | НСУ «С»                | 0.5                   |  |  |
| 5          | ГАК-2                  | 1                     |  |  |
| 6          | RFL-99,95              | 1                     |  |  |
| 7          | НСУ «С»                | 1                     |  |  |
| 8          | ГАК-2                  | 1.5                   |  |  |
| 9          | RFL-99,95              | 1.5                   |  |  |
| 10         | НСУ «С»                | 1.5                   |  |  |

#### 2 Методика эксперимента

#### 2.1 Методика приготовления отрицательной пасты

Отрицательная паста была приготовлена в соответствии с ГОСТ 3.1.105-84. Состав для приготовления отрицательной пасты представлен в таблице 4. Таблица 2.2 Рецепт отрицательной пасты

| Наименование компонентов, параметры<br>приготовления пасты | Концентрация углеродной добавки, % |        |        |
|------------------------------------------------------------|------------------------------------|--------|--------|
|                                                            | 0.5                                | 1      | 1.5    |
| 1. Свинцовый порошок, г (степень окисленности 67%)         | 25                                 | 25     | 25     |
| 2. Раствор серной кислоты (d=1,400 г/см <sup>3</sup> ), мл | 1.750                              | 1.750  | 1.750  |
| 3. Вода рецептурная (дистиллированная), мл                 | 2.5                                | 2.5    | 2.5    |
| 4. Расширитель «Элеконт-08», г                             | 0.1945                             | 0.1945 | 0.1945 |
| 5. Углерод, г                                              | 0.125                              | 0.250  | 0.375  |
| 6. Стеариновая кислота, г                                  | 0.025                              | 0.025  | 0.025  |
| 7. Волокно, г                                              | 0.025                              | 0.025  | 0.025  |

Для приготовления отрицательной активной массы в стеклянную пробирку при перемешивании засыпали 25 г свинцового порошка, изготовленного из свинца марки «С1» (степень окисленности 67%), и добавляли исследуемой углеродной добавки (0.5%, 1%,1.5% мас. % по отношению к свинцовому порошку),

В фарфоровую чашку добавляли компоненты смеси:

- 1. Свинцовый порошок
- 2. Расширитель «Элеконт»
- 3. Волокно
- 4. Углерод
- 5. Стеариновая кислота

- 6. Вода дистиллированная (температура заливаемой воды составляла 20°С)
- 7. Раствор серной кислоты (d=1.4 г/см<sup>3</sup>) (температура заливаемого раствора 20°C)

После добавления данных компонентов и их тщательного перемешивания определяли плотность пасты. Плотность определялась следующим образом: стеклянную пробку емкостью 1.9 см<sup>3</sup> плотно наполняли пастой, при этом непрерывно постукивая. Излишки пасты удалялись шпателем. Взвешивали стеклянную крышку с пастой. Плотность рассчитывали по формуле:

$$P = (A-B)/1.9$$
,

где А – масса крышки с пастой, г;

В -масса пустой крышки, г;

1,9 – объем стеклянной крышки, см<sup>3</sup>.

Плотность пасты составляла  $3.09-4.15 \, \text{г/см}^3$ .

После отрицательную активную массу наносили на решетку из Pb—Ca сплава. Электроды после нанесения на них активной массы выдерживались над водой в термостате при t=60°C в течение 48 часов и далее высушивались на воздухе. Масса отрицательной активной массы составила для варианта без С 4.2-6.1, для ГАК-2 от 3.4-6.4, для RFL 99.95 от 3.8-6.0 и для НСУ «С» от 4.2-5.8. Плотность массы составила 2.73-4.15 г/см<sup>3</sup>

Процентное содержание свинца вычислялось по данной формуле:

$$Pb(\%) = \frac{M(Pb)}{M(PbO)} \times 67\%(PbO) + 33\%(Pb)$$

M(Pb)=207 г/моль

M(PbO)=223 г/моль

$$Pb(\%) = \frac{207}{223} \times 67\% + 33\% = 0.952$$

Масса свинца в активной массе после сушки, г;

g (Pb)=
$$m_a \times x_{pb} \times 0.952$$
 ( $\Gamma$ )

где m<sub>a</sub> – масса отрицательной активной массы после сушки, г;

 $x_{pb}$  – доля свинцового порошка в активной массе.

Масса свинцового порошка содержащегося в отрицательной пасте рассчитывается из общего содержания всех компонентов ( свинец+ углерод+расширитель+волокно+ вода+ серная кислота+стеариновая кислота)

Количество практического выхода электричества рассчитывается по формуле:

$$Q_{\text{практ}}=I\times t(A*ч),$$

$$\Gamma$$
де  $I$  – ток,  $A$ ;

t-количество времени разряда электрода,ч.

Количество теоретического электричества рассчитывается по формуле:

$$Q_{\text{Teop}} = \frac{g(Pb)}{q} (A*y),$$

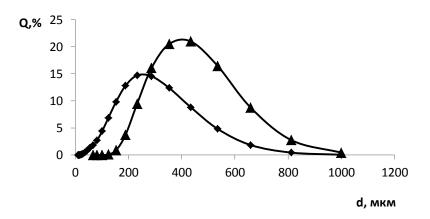
Где q- электрохимический коэффициент= $3.87 \frac{2}{4*u}$ 

Коэффициент использования вычисляется по формуле:

$$K_{\text{исп.}} = \frac{Qnpa\kappa m.}{Qmeop} \times 100\%$$

#### 2.2 Методика формировки электродов и циклирование

Тестирование исследуемых электродов проводилось в свинцовокислотных ячейках с одним отрицательным и двумя положительными электродами, разделенных между собой сепараторами. Электролитом служил раствор серной кислоты ( $d=1.28 \ r\cdot cm^{-3}$ ). Циклирование ячеек проводилось гальваностатическим способом. Первый заряд проводился трехступенчатым гальваностатическим режимом, для каждой ступени был выбран свой то( общее время заряда около 20 часов). Далее циклирование тестовых ячеек проводилось в следующем режиме: разряд током 110 мА до напряжения 1.7 В, заряд током 110 мА на 120% от емкости разряда).


#### 2.3 Методика определения гранулометрического состава

Определение гранулометрического состава порошков было проведено при помощи лазерного дифракционного анализатора размера частиц SALD-2201 (SHIMADZU, Япония). Лазерный дифракционный анализатор размера частиц SALD-2201 позволяет определять частицы в размере от 0,03 до 1000 мкм.

#### 3.Полученные результаты и их обсуждение

#### 3.1 Характеризация углеродных материалов.

Для характеризации образцов углеродных материалов использовались следующие параметры: размер частиц, удельная поверхность, качественный состав примесей. Кривые распределения частиц порошков исследуемых углеродных материалов по размерам представлены на рисунке 2.1(a, б):



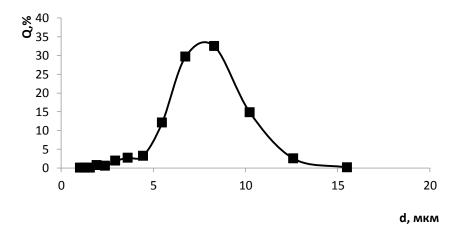



Рис.2.1. Кривые распределения частиц по размерам исходных исследуемых углеродных материалов: графит «ГАК-2» ( $\blacklozenge$ ), графит «RFL-M 99.95» ( $\blacktriangle$ ) (a); углерод НСУ«С» ( $\blacksquare$ ) ( $\delta$ ).

Исходя из выше представленных данных видно, что образцы графитов RFL -99.95 М и ГАК-2 характеризуются крупным размером частиц, и основная доля их приходится на размеры 300-500 мкм и 200-350 мкм, соответственно. Образец НСУ «С» имеет более мелкодисперсный размер частиц, в диапазоне 6-10 мкм.

Методом БЭТ определены величины удельной поверхности углеродных материалов, представленные в таблице 2.4:

 Таблица 2.4

 Величины удельной поверхности углеродных материалов

| Тип углеродной добавки             | RFL-M 99.95 | НСУ «С» | ГАК-2 |
|------------------------------------|-------------|---------|-------|
| $S_{yд}$ , $M^2 \cdot \Gamma^{-1}$ | 1           | 65      | 4     |

Из данных,представленных в таблице видно, что величины удельных поверхностей материалов различны. Наибольшей высокой удельной поверхностью характеризуется образец углерода НСУ «С».

### 3.2 Влияние добавки углерода на разрядные характеристики отрицательного электрода.

Проводилось изучение влияния углеродных добавок, вводимых в отрицательную активную массу на электрохимические свойства отрицательного электрода свинцово-кислотного аккумулятора.

На рисунке 2.2 представлены зарядно-разрядные кривые для различных вариантов исследуемых электродов на II цикле.

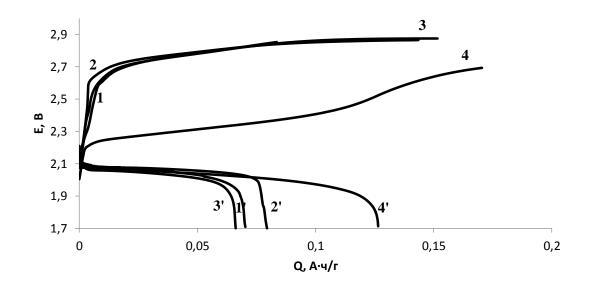



Рисунок 2.2. Зарядно-разрядные кривые отрицательного электрода с различными углеродными добавками на 2 цикле: 1, 1' — контрольный вариант; 2, 2'-  $\Gamma$ AK-2; 3, 3'- RFL- 99,95; 4, 4' — HCV «С циклирования:  $I_{\text{зар}}=I_{\text{раз}}=110$  мА. Заряд составлял 120% от разрядной емкости.

На рисунке видно, что наименьшей поляризуемостью обладают электроды с добавкой углерода НСУ «С».

Так же мы определяли зависимость емкости и коэффициента использования от номера цикла(3 цикла).

На рисунке 2.3 представлена зависимость емкости ОАМ с 1% содержанием углерода от номера цикла:

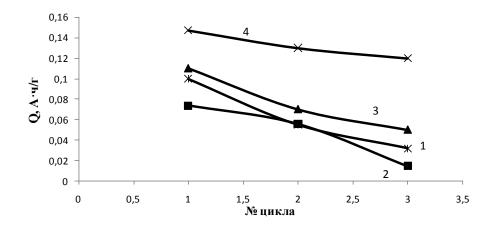



Рисунок 2.3.Зависимость емкости использования ОАМ от номера цикла: 1-контрольный вариант,  $2 - 1\% \Gamma AK-2$ , 3 - 1% RFL-99.95, 4 - 1% HCУ «С».

Мы видим что введение добавки ГАК-2 снижает емкость особенно на первом цикле, добавка RFL-99.95 незначительно больше по емкости по сравнению с контрольным вариантом. А наиболее высокие значения емкости при добавлении НСУ

Кривые влияние добавок углерода на величину коэффициента использования активной массы отрицательных электродов представлен на рисунке.

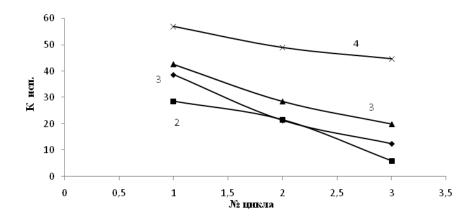



Рисунок 2.43ависимость коэффициента использования ОАМ от номера цикла: 1-контрольный вариант, 2 - 1% ГАК-2, 3- 1% RFL-99.95, 4- 1% HCУ «С».

Здесь так же видно что добавка НСУ имеет наибольший коэффициент использования, в сравнении с другими добавками

Таблица 3.2 - Разрядные емкости и коэффициенты использования исследуемых отрицательных электродов на различных трех циклах для контрольного варианта, углеродных добавок ГАК-2, RFL-99.95, НСУ «С».

| No                     | 1 Ц         | ИКЛ   | 2 ЦІ        | ИКЛ   | 3 ЦИ     | КЛ    |
|------------------------|-------------|-------|-------------|-------|----------|-------|
| Контрольный<br>вариант | Q A*<br>ч/Γ | К, %  | Q A*<br>ч/г | К, %  | Q А* ч/г | К, %  |
| Бариант                | 0.1046      | 40.49 | 0.0936      | 36.22 | 0.0722   | 27.95 |
|                        | 0.0908      | 35.14 | 0.0566      | 21.90 | 0.0348   | 13.46 |
| ГАК-2                  |             |       |             |       |          |       |
| 0.5                    | 0.0817      | 31.63 | 0.0837      | 32.39 | 0.0671   | 25.98 |

| 4         |        |       |        |       |        |       |
|-----------|--------|-------|--------|-------|--------|-------|
| 1         | 0.0657 | 25.43 | 0.0478 | 18.50 | 0.0252 | 9.76  |
| 1.5       | 0.0625 | 24.20 | 0.0507 | 19.62 | 0.0307 | 11.88 |
| RFL-99.95 |        |       |        |       |        |       |
| 0.5       | 0.0472 | 18.25 | 0.0869 | 33.65 | 0.0458 | 17.71 |
| 1         | 0.0907 | 35.11 | 0.0662 | 25.61 | 0.0483 | 18.70 |
| 1.5       | 0.0686 | 26.54 | 0.0289 | 11.17 | 0.0449 | 17.36 |
| НСУ «С»   |        |       |        |       |        |       |
| 0.5       | 0.1170 | 45.26 | 0.1328 | 51.40 | 0.0670 | 25.92 |
| 1         | 0.1603 | 62.06 | 0.1267 | 49.02 | 0.1118 | 43.28 |
| 1.5       | 0.1255 | 48.56 | 0.1195 | 46.24 | 0.1177 | 45.55 |

#### Заключение.

- 1. Проведена характеризация углеродных добавок по гранулометрическому составу и удельной поверхности. Показано, что образец НСУ «С» имеет высокую удельную поверхность 65 м<sup>2</sup>·г<sup>-1</sup> и наименьший размер частиц 6-10 мкм.
- 2. Изучено влияние углеродных добавок на ёмкость отрицательного электрода и коэффициент использования активной массы. Получено, что введение 1% углерода НСУ «С» приводит к увеличению разрядной ёмкости отрицательного электрода и увеличению коэффициента использования активной массы по сравнению с контрольным вариантом и вариантами с другими углеродными добавками.