Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра физики твердого тела

«Исследование амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода»

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента 4 курса 411 группы

направления 11.03.04 «Электроника и наноэлектроника»

факультета нано- и биомедицинских технологий

Хлопкова Алексея Васильевича

Научные руководители

профессор, д.фм.н.		А.В. Скрипаль
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
доцент, к.фм.н.		А.П. Фролов
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
Зав. кафедрой		
профессор, д.фм.н.		Д.А. Усанов
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия

Введение

Ближнеполевая СВЧ-микроскопия – это неразрушающий метод исследования, позволяющий исследовать малоразмерные объекты с высокой степенью локальности, базируется на регистрации СВЧ-воздействия, локализованного в ближнем поле зонда.

СВЧ-микроскопия обладает рядом преимуществ: электромагнитная волна не имеет массы и электрического заряда, свободно распространяется в воздухе и многих диэлектрических материалах, легко изменяет поляризацию, может иметь сравнительно большую длину волны и т.д.

Таким образом, с помощью СВЧ-микроскопа можно определять не только геометрию поверхности объектов, но и параметры материалов под поверхностью, за счет проникновения СВЧ-излучения в объем структуры. Это является основным достоинством СВЧ-микроскопа по сравнению с туннельным и атомно-силовым микроскопами.

Ближнеполевые СВЧ-микроскопы, в отличие от оптических, не ограничены дифракционным пределом, разрешающая способность превосходит длину волны использующегося излучения на несколько порядков. В таких микроскопах используется эффект «ближнего поля» – образование квазистационарных полей, быстро затухающих с расстоянием и локализующихся в малой окрестности излучающей системы. Располагая исследуемый объект в области существования этого поля, можно исследовать распределение его электрофизических свойств с разрешением, намного меньшим, чем длина волны используемого излучения.

Для того чтобы достичь высокого быстродействия современная электроника работает на больших частотах. СВЧ-микроскоп позволяет исследовать параметры электронных структур на тех частотах, на которых и планируется их использование. Целью бакалаврской работы являлось разработка микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода со штыревой металлической структурой и исследование его амплитудно-частотных характеристик.

Для достижения этой цели было выполнено:

- при помощи системы автоматизированного проектирования *High Frequency Structural Simulator v13* смоделирован микрокоаксиальный зонд ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода,
- проведен расчет амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа при расположении в волноводе структуры, состоящей из металлических штырей, и при её отсутствии.

Для определения наилучшей резонансной особенности была проведена параметризация:

- положения штырей вдоль волновода,

- угла поворота металлических штырей,

- расстояния между золотой пленкой и зондом.

Проведено экспериментальное исследование амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода с помещенной в него штыревой структурой. Расчет амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода

На основе численного моделирования с использованием метода конечных элементов в CAПР HFSS Ansoft исследовалось взаимодействие электромагнитного поля с системой на основе модели микрокоаксиального зонда СВЧ-микроскопа, созданной по параметрам уже существующего микрокоаксиально-волноводного перехода с отрезком микрокоаксиала, центральный проводник которого выступает за пределы внешнего проводника микрокоаксиала на величину 1 мм. Конец центрального микрокоаксиального заостренным проводника зонда выполнялся С постепенно уменьшающимся диаметром до величины 2,5 мкм. Внутренняя (невыступающая) часть центрального проводника помещалась В диэлектрический конус.

В качестве волноведущей части использовался прямоугольный волновод сечением 23x10 мм.

Рассматривалась ситуация, при которой у острия зонда была расположена золотая пленка толщиной 10 мкм, величина зазора *h* варьировалась от 50 нм до 150 нм (см. рисунок 1).

Рисунок 1 Конструкция зонда на основе микрокоаксиально-волноводного перехода, содержащего: *1*- прямоугольная волноведущая часть, *2*- микрокоаксиально-волноводный переход, *3*- золотая пленка, *h*- расстояние между золотой пленкой и концом центрального проводника микрокоаксиального зонда

Однако по результатам компьютерного моделирования в спектральных характеристиках ближнеполевого зонда представленной конструкции не выявлено ярко выраженных резонансных особенностей.

Описание, структуры состоящей из металлических штырей помещенной в волновод

С целью создания резонансной моды колебаний в спектральной характеристике коэффициента отражения в волноведущую часть данной конструкции, помещалась структура, состоящая из медных штырей диаметром 1 мм, и находящихся друг от друга на расстоянии 2 мм. Данная конструкция была, закреплена на блоке из материала с диэлектрической проницаемостью $\varepsilon = 1.05$ перпендикулярно направлению распространения электромагнитного излучения И полностью заполняя волновод ПО поперечному сечению. В дальнейшем металлические штыри поворачивались на угол α относительно вертикальной оси.

Результаты расчета амплитудно-частотных характеристик компьютерной модели микрокоаксиального зонда ближнеполевого СВЧмикроскопа с резонатором в виде отрезка волновода

С целью определения угла α , при котором в спектре коэффициента отражения исследуемой модели возникает наиболее выраженная резонансная мода колебаний, был проведен параметрический анализ зависимости частотного положения резонансной особенности в спектре коэффициента отражения. В качестве задаваемого параметра выступал угол α между штырем и вертикальной осью *Y*. Данный угол варьировался в диапазоне от 10° до 80° с шагом 10°(см. рисунок 2).

Рисунок 2 Амплитудно-частотные зависимости коэффициента отражения S_{11} микрокоаксиального зонда, центральный проводник которого выступает за пределы внешнего проводника микрокоаксиала, при помещенной внутрь волновода структуре и при различном угле поворота стержней этой структуры. Положение зонда над поверхностью золотой пластины 100 нм $1-\alpha=10^{\circ}$, $2-\alpha=20^{\circ}$, $3-\alpha=30^{\circ}$, $4-\alpha=40^{\circ}$, $5-\alpha=50^{\circ}$, $6-\alpha=60^{\circ}$, $7-\alpha=70^{\circ}$, $8-\alpha=80^{\circ}$, 9- пустой волновод

С целью определения расстояния *l*, при котором в спектре коэффициента отражения исследуемой модели возникает наиболее выраженная резонансная мода колебаний, был проведен параметрический анализ зависимости частотного положения резонансной особенности в спектре коэффициента отражения. В качестве задаваемого параметра выступало расстояние *l* между диэлектрической пластиной и плоскостью, содержащей ось симметрии коаксиальной части зонда (положение штыревой структуры в волноводе зонда на основе микрокоаксиального перехода). Данное расстояние варьировалось в диапазоне от 28 мм до 32 мм с шагом 1 мм (см. рисунок 3).

Рисунок 3 амплитудно-частотные зависимости коэффициента отражения S_{11} микрокоаксиального зонда, при помещенной внутрь волновода структуре. Угол поворота стержней этой структуры α =50°. Положение зонда над поверхностью золотой пластины 100 нм. 1*l*=32 мм, 2- *l*=31 мм., 3- *l*=30 мм, 4- *l*=29 мм, 5- *l*=28 мм

В ходе расчетов структуры было выявлено, что наилучшая резонансная особенность проявляется при положении l=30 мм, угле наклона медных стержней $\alpha=50^{\circ}$. Для определения разрешающей способности был проведен расчет структуры с такими параметрами. Параметр *h* (зазор зонд – поверхность золотой пленки) варьировался от 50 нм до 150 нм. На рисунке 12 представлены амплитудно-частотные зависимости коэффициента отражения *S*₁₁ для такой структуры (см. рисунок 4).

Рисунок 4 амплитудно-частотные зависимости коэффициента отражения S_{11} микрокоаксиального зонда, центральный проводник которого выступает за пределы внешнего проводника микрокоаксиала, при помещенной внутрь волновода структуре. Изменялся параметр h, от 50 нм до 150 нм, 1 - h = 50 нм, 2 - h = 100 нм, 3 - h = 150 нм

Как следует из результатов, представленных на рисунке 12, на частоте $f\sim 9.55$ ГГц при изменении величины h от 50 нм до 150 нм наблюдается наибольшая чувствительность $\partial S_{11}/\partial h$, величина которой составляет 0.06 дБ/нм.

Экспериментальное исследование амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧмикроскопа с резонатором в виде отрезка волновода с помещенной внутрь структурой, состоящей из металлических штырей

Высокочастотные характеристики исследуемого СВЧ-устройства на основе резонатора в виде отрезка волновода с помещенной внутрь штыревой структурой, соединенного с микрокоаксиальным переходом, центральный проводник которого выступает за пределы внешнего проводника на величину порядка 1 мм, нагруженным на металлодиэлектрическую структуру, исследовались с помощью векторного анализатора цепей Agilent PNA-L Network Analyzer N5230A.

Экспериментальное исследование амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода было проведено с использованием трех образцов штыревой структуры. Каждый образец помещался в волновод на заданное расстояние *l* между плоскостью в которой лежат медные штыри и плоскостью, содержащей ось симметрии коаксиальной части зонда. Параметр *l* брался равным 2 см, 3 см, 5 см, 7 см и 9 см.

На рисунке 5 представлено семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда, для различных значений параметра *l*. Использовался образец с углом $\alpha = 45^{\circ}$.

Рисунок 5 Семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда, для различных значений параметра *l*. Использовался образец с углом α = 45°

На рисунке 6 представлено семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда, для различных значений параметра *l*. Использовался образец с углом $\alpha = 50^{\circ}$.

Рисунок 6 Семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда, для различных значений параметра *l*. Использовался образец с углом α = 50°

На рисунке 7 представлено семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда, для различных значений параметра *l*. Использовался образец с углом $\alpha = 55^{\circ}$.

Рисунок 7 Семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда, для различных значений параметра *l*. Использовался образец с углом α = 55°

Рассматривалась ситуация, при которой у острия зонда была расположена золотая пленка, величина зазора *h* ~ 20мкм.

На рисунке 8 представлено семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда «нагруженного» на золотую пленку, для различных значений параметра *l*. Использовался образец с углом $\alpha = 45^{\circ}$.

Рисунок 8 Семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда «нагруженного» на золотую пленку, для различных значений параметра *l*. Использовался образец с углом $\alpha = 45^{\circ}$

На рисунке 9 представлено семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда «нагруженного» на золотую пленку, для различных значений параметра l. Использовался образец с углом $\alpha = 50^{\circ}$.

Рисунок 9 Семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда «нагруженного» на золотую пленку, для различных значений параметра *I*. Использовался образец с углом $\alpha = 50^{\circ}$

На рисунке 10 представлено семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда «нагруженного» на золотую пленку, для различных значений параметра *l*. Использовался образец с углом $\alpha = 55^{\circ}$.

Рисунок 10 Семейство амплитудно-частотных характеристик коэффициента отражения S_{11} микрокоаксиального зонда «нагруженного» на золотую пленку, для различных значений параметра *I*. Использовался образец с углом $\alpha = 50^{\circ}$

Заключение

В ходе выполнения бакалаврской работы получены следующие результаты:

Проведено компьютерное моделирование с использованием метода конечных элементов в САПР HFSS Ansoft микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода.

Проведен расчет амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода, содержащего металлическую штыревую структуру и при её отсутствии.

С целью получения наилучшей резонансной особенности на АЧХ микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода были оптимизированы параметры штыревой структуры с помощью:

 изменения положения штыревой структуры относительно плоскости симметрии микрокоаксиала;

- изменения угла поворота элементов штыревой структуры;

- изменения расстояние между золотой пластиной и зондом.

Проведено экспериментальное исследование амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода с помещенной в него штыревой структурой, состоящей из медных штырей.

Показана возможность создания перестраиваемого (управляемого) резонатора микрокоаксиального зонда ближнеполевого СВЧ-микроскопа на основе волноведущей секции, содержащей металлическую штыревую структуру.

Список используемых источников

- Ближнеполевая сканирующая СВЧ-микроскопия и области ее применения / Д.А. Усанов. — Саратов: Изд-во Сарат. ун-та, 2010. — 100 с.
- Near-field microwave microscopy of materials properties" in Microwave Superconductivity / S.M.Anlage, D.E.Steinhauer, B.J.Feenstra et al. / Eds. H. Weinstock and M. Nisenoff. – Amsterdam. The Netherlands: Kluwer, 2001. – P. 239–269.
- Усанов Д.А., Горбатов С.С. Резонансы в системе диафрагма– короткозамыкающий поршень // Изв. вузов. Радиофизика. – 2001. – Т.44, № 12. – С. 1046–1049.
- Усанов Д.А., Горбатов С.С. Волноводный измерительный резонатор // Изв. вузов. Радиоэлектроника. – 2002. – Т.45. – № 9. – С. 26–28.
- Kleismit R. A., Kazimierczuk M. K. and Kozlowski G. Sensitivity and Resolution of Evanescent Microwave Microscope // IEEE Transactions on Microwave Theory and Techniques. – 2006. – Vol. 54. – N 2. – P. 639–647.
- S.M. Anlage, D.E. Steinhauer, B.J. Feenstra, C.P. Vlahacos, F.C. Wellstood. Near-Field Microwave Microscopy of Materials Properties // Microwave Superconductivity. — Amsterdam. — 2001. — P. 239-269.
- T. Norokido, I. Bac, K. Mirumo. scanning Near-Field Millimeter-Wave Microscopy Using a Metal Hit as a Scanning Probe // IEEE Trans. on Microwave Theory and Techniques, 2001. — V.49. — № 3. — P. 491-499.
- M. Gobovsky, A. Galkin, D. Davidov. High-spatial resolution resistivity mapping of large-area YBCO films by a near- field millimeter-wave microscope // IEEE Trans. On Microwave Theory and Techniques, 1996. — V. 44. — № 7. — P. 1390-1392.