Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра физики твердого тела

«СВЧ фотонные кристаллы на основе отрезков коаксиальной линии передачи»

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента 4 курса 411 группы

направления 11.03.04 «Электроника и наноэлектроника»

факультета нано- и биомедицинских технологий

Тимофеева Ильи Олеговича

Научные руководители профессор, д.ф.-м.н. А. В. Скрипаль должность, уч. степень, уч. звание подпись, дата инициалы, фамилия Д. В. Пономарев доцент, к.ф.-м.н. должность, уч. степень, уч. звание подпись, дата инициалы, фамилия Зав. кафедрой профессор, д.ф.-.м.н. Д. А. Усанов должность, уч. степень, уч. звание подпись, дата инициалы, фамилия Саратов 2016

Актуальность проблемы

Научно технический прогресс немыслим без микро и наноэлектроники, а интенсивное развитее нанотехнологий провоцирует широкое применение в современной электронике полупроводниковых материалов, многослойных структур и метаматериалов на основе которых изготавливают различные полупроводниковые приборы и микросхемы. Исходя из этого все наши предыдущие исследования были, на прямую или косвенно, связаны с физикой процессов протекающих в данных структурах, методами измерения их параметров, видами и способами их изготовления.

Метаматериалы представляют собой искусственно созданные гетерогенные геометрические среды. В которых размеры И электрофизические параметры специально подобранных составляющих периодически изменяются элементов вдоль одного или нескольких пространственных направлений. Уникальные радиофизические, оптические, магнитные И акустические свойства метаматериалов, обусловленные резонансным взаимодействием электромагнитной волны с периодической структурой, позволяют создавать на их основе новые типы структур и устройств с управляемыми параметрами. К метаматериалам относится класс фотонных кристаллов – искусственных периодических структур с периодом, сравнимым с длиной волны распространяющегося в них электромагнитного излучения[1].

По существу фотонные кристаллы представляют собой систему связанных резонаторов, именно поэтому они обладают окнами прозрачности и полосами заграждения[2]. В результате ФК представляют большой интерес для исследователей не только как элементы для создания перспективных устройств радио- и оптоэлектроники, в частности, полосно-пропускающих фильтров, но и как модельные объекты для изучения особенностей

распространения и локализации электромагнитных волн в пространстве взаимодействующих резонаторов.

Создание периодических фотонных структур СВЧ-диапазона И исследование их свойств имеют важное практическое значение в виду стремительного развития современных систем связи и телекоммуникации, антенн и радарной техники, измерительного оборудования и различного рода датчиков [1]. Для всех частотных диапазонов, физические особенности взаимодействия электромагнитных волн с фотонными кристаллами носят схожий характер, однако СВЧ -фотонные кристаллы обладают рядом преимуществ, а именно: технологичность изготовления периодических совпадение численного расчета структур;хорошее С экспериментом; возможность модификации структуры фотонного кристалла в силу того, что его составные части имеют макроскопические размеры; конструктивно фотонный кристалл может быть создан на основе стандартных элементов СВЧ-схем; результаты исследований особенностей взаимодействия СВЧизлучения с фотонным кристаллом могут быть использованы для создания структур, работающих в более высокочастотных диапазонах[3-4].

Исследование периодических СВЧ фотонных кристаллов представляет также особый интерес в связи с перспективой их использования при создании различных устройств, материалов и композитов, изначально предназначенных для работы в СВЧ-диапазоне.

В связи с этим является актуальным проведение исследований особенностей взаимодействия электромагнитного излучения сверхвысокочастотного диапазона с одномерными коаксиальными фотонными кристаллами, определение чувствительности частотной зависимости «окон прозрачности» в запрещенной зоне фотонного кристалла к параметрам нарушения периодичности.

Цель бакалаврской работы:

Выявление особенностей взаимодействия электромагнитного излучения сверхвысокочастотного диапазона с одномерными коаксиальными фотонными кристаллами.

Новизна исследований, проведенных в ходе бакалаврской работы, состоит в следующем:

Установлена зависимость спектра прохождения коаксиальной фотонной структуры от изменения таких параметров диэлектрического заполнения как: изменения диэлектрической проницаемости слоев, изменения количество слоев в фотонной структуре и варьирование длин слоев диэлектрического заполнения.

Также в процессе моделирования было получено узкое «окно прозрачности» в фотонной «запрещенной зоне» одномерного фотонного кристалла и исследована частотная зависимость «окна прозрачности» от изменения длины среднего слоя диэлектрического заполнения.

Экспериментально реализован коаксиальный фотонный кристалл СВЧдиапазона с двумя видами диэлектрического заполнения, а также экспериментально исследована зависимость окна прозрачности от изменения длины среднего слоя коаксиальной одномерной фотонной структуры.

СОДЕРЖАНИЕ РАБОТЫ

Во введении описана актуальность выбранной темы бакалаврской работы, поставлена цель работы.

В первом разделе приведен теоретический обзор о видах и свойствах фотонных кристаллов СВЧ-диапазона, а так же, для некоторых видов одномерных фотонных структур, расчет коэффициентов отражения и прохождения.

Во втором разделе представлено компьютерное моделирование одномерных коаксиальных фотонных структур СВЧ диапазона. В ходе компьютерного моделирования рассматривалась коаксиальная фотонная структура, состоящая из последовательно соединенных чередующихся отрезков коаксиальной линии передачи с различными параметрами слоев, включенная в 50-омную линию передачи (см.рисунок 1).

С помощью программы моделирования СВЧ-схем Microwave Office, была создана схема коаксиальной линии передачи, в которую далее был помещен фотонный кристалл СВЧ диапазона. Диаметр внешнего проводника коаксиальной линии составляет 7,7 мм, диаметр внутренней жилы 3,2мм.

Рисунок 1 Блок схема диэлектрической слоистой структуры в коаксиальной линии передачи: 1— слой «первого» типа, 2— слой «второго» типа

было исследовано влияние параметров диэлектриков работе В многослойной прохождения структуры, путем анализа спектра электромагнитной волны прошедшей коаксиальный через фотонный кристалл: изменение толщины четных или нечетных слоев заполнения, изменение диэлектрической проницаемости слоев, количество слоев в фотонной структуре, изменение нарушений периодичности структуры.

В первом случае рассматривалось зависимость коэффициента прохождения *D* от количества слоев в одномерной коаксиальной фотонной структуре. Было построено два вида коаксиальных фотонных структур: с четным и нечетным количеством слоев и промоделированы частотные зависимости коэффициента прохождения от количества слоев в структуре,

для «нечетных» было выбрано 5, 7, 9,11,13, 15 слоев, а для «четных» 6, 8,10, 12,14 и 16. В качестве слоев «первого» типа, был выбраны слои с диэлектрической проницаемостью ε =1 и длинной *x*=20 мм, в качестве слоев «второго» типа – ε =3 и длинной *l*=10 мм. Все измерения проводились в диапазоне частот от 0,4 ГГц до 7 ГГц.

На рисунке 2 представлена расчетная частотная зависимость коэффициента пропускания *D* для коаксиальных фотонных кристаллов без нарушения периодичности, состоящих из нечетного числа слоев(5, 7, 9,11,13, 15).

Рисунок 2 Частотная зависимость коэффициента прохождения *D* от количества слоев в «не четной» коаксиальной фотонной структуре: 1–

5 слоев; 2-7 слоев; 3-9 слоев; 4-11 слоев; 5-13 слоев; 6-15 слоев

В ходе компьютерного моделирования было установлено (см. рисунок 4), что при увеличении количества слоёв коаксиального фотонного кристалла, представляющего собой одномерную структуру с фиксированным значением диэлектрической проницаемости, ширина запрещенной зоны монотонно уменьшается, а её глубина монотонно увеличивается.

С фотонными структурами с четным количеством слоев, было проделано то же самое и в результате расчетов было установлено, что частотная зависимости коэффициента прохождения *D* «четной» структуры идентична частотной зависимости «нечетной» (см. Рисунок 2). Это связано с

тем, что слоем «первого» типа является материал с диэлектрической проницаемостью равной ε =1, другими словами это воздушное заполнение между слоями «второго» типа с ε =3, но при прохождении электромагнитной волны через «нечетную» коаксиальную фотонную структуру первым и последним слоем все равно является воздушное заполнение и при уменьшении числа слоев до четного числа не вносит значительного изменения в спектр прохождения нашей структуры.

Bo втором случае исследовалась зависимость коэффициента прохождения D от изменения диэлектрической проницаемости ε слоев «второго» типа коаксиальной фотонной структуры, таким образом, у первого, третьего, пятого, седьмого, девятого и одиннадцатого слоя изменялась диэлектрическая проницаемость в диапазоне от 2 до 5 с шагом 0,5. Подразумевалось, что у слоев «первого» типа диэлектрическая проницаемость остается постоянной и равной є=1. Внутренние и внешние диаметры всех слоев оставались в соответствии с ранее выбранными внешним и внутренним проводниками, толщина слоев не изменялась, для четных слоев составляла 20 мм, а для не четных 10 мм. Все измерения проводились в диапазоне частот от 0,4 ГГц до 7 ГГц.

Рисунок 3 Зависимость коэффициента прохождения *D* одномерного коаксиального фотонного кристалла от изменения ε слоя «второго» типа: 1– $\varepsilon=2$; 2– $\varepsilon=2,5$; 3– $\varepsilon=3$; 4– $\varepsilon=3,5$; 5– $\varepsilon=4$; 6– $\varepsilon=4,5$; 7– $\varepsilon=5$

Из полученной зависимости (см. Рисунок 3) было выявлено, что с увеличением диэлектрической проницаемости глубина фотонной «запрещенной зоны» монотонно увеличивается, а сама зона становится шире и смещается в сторону более низких частот.

Далее были промоделированы зависимости коэффициента прохождения от толщины слоя «первого» и «второго» типа одномерного коаксиального фотонного кристалла, в диапазоне от 0.4 до 7 ГГц. В первом случае длина слоя «первого» типа с ε =1 оставалась постоянной и равной x= 20 мм, а толщина слоев «второго» типа l с ε =3 изменялась от 10 до 5 мм с шагом в 1 мм. Из полученной зависимости видно, что с увеличением толщины слоя с ε =3, «запрещенная зона» коаксиального фотонного кристалла углубляется и смещается в низкочастотную область диапазона (Рисунок 4).

Рисунок 4 Зависимость коэффициента прохождения D от толщины слоя «второго» типа коаксиальной фотонной структуры: 1 – 10 мм; 2 – 9 мм; 3

- 8 мм; 4 - 7 мм; 5 - 6 мм; 6 - 5 мм

Во втором случае *l* является постоянной и равной 10 мм, толщина слоя «первого» типа *x* изменяется от 40 мм до 15 мм, с шагом 5 мм. При детальном рассмотрении данной зависимости видно, что при увеличении толщены слоев «первого» типа в одномерном коаксиальном фотонном кристалле, запрещенная зона, так же как и в первом случае, сдвигается в низкочастотную область (Рисунок 5). В некоторых случаях в нашем диапазоне появлялись две запрещенные зоны для распространения электромагнитного излучения.

Рисунок 5 Зависимость коэффициента прохождения D от увеличения толщины слоя «первого» типа с *ε*=1 в коаксиальной фотонной структуре:

1 – 40 мм; 2 – 35 мм; 3 – 30 мм;4 – 25 мм; 5 – 20 мм;6 – 15 мм

Далее была выбрана коаксиальная одномерная фотонная структура с наиболее подходящими нам параметрами, в которой толщина слоя «второго» типа составляла l=10 мм, а величина слоев «первого» типа x=20мм. В данной фотонной структуре были сделаны неоднородности, в частности изменялась длина среднего слоя с $\varepsilon=1$ от 7 мм до 1 мм, чтобы получить в запрещенной зоне узкое «окно» прозрачности. В результате моделирования было установлено, что при уменьшении толщины среднего слоя «первого» типа, «окно прозрачности» сдвигается в высокочастотную область, тем самым изменяя ширину среднего слоя, 7 мм, 6 мм, 5 мм, 4 мм, 3 мм, 2 мм, 1 мм, можно менять положение окна прозрачности в фотонной «запрещенной зоне».

Рисунок 6 Частотная зависимость окон прозрачности в запрещенной зоне фотонного кристалла при нарушении его однородности изменением среднего слоя «первого» типа: 1 – 1 мм; 2 – 2 мм; 3 – 3 мм; 4 – 4 мм; 5 – 5 мм; 6 – 6 мм; 7 – 7 мм

В третьем разделе было проведено экспериментальное исследование коаксиальных одномерных фотонных структур. В результате исследования были получены спектры прохождения, в диапазоне от 0,4ГГц до 7ГГц, коаксиальных фотонных кристаллов с двумя видами диэлектрического заполнения: воздух-капролон и воздух-эбонит (рисунок7).

Рисунок 7 Экспериментальные частотные зависимости коэффициента прохождения *D* одномерного коаксиального фотонного кристалла с диэлектрическим заполнением: (*a*) воздух-капролон, (*б*) воздух-эбонит

А так же получены частотные зависимости окон прозрачности при изменении длины среднего слоя диэлектрического заполнения коаксиальной линии, и установлено, что в обоих случаях при уменьшении длины среднего слоя возникает окно прозрачности и сдвигается в сторону высоких частот(рисунок 8).

Рисунок 8Экспериментальные частотные зависимости «окна прозрачности» в запрещенной зоне ФК при изменении длины среднего слоя диэлектрического заполнения: (*a*) воздух-капролон: 1 – 1 мм; 2 – 2 мм; 3 – 3 мм; 4 – 4 мм; 5 – 5 мм; 6 – 6 мм; 7 – 7 мм; (*б*) воздух-эбонит: 1 – 1 мм; 2 – 2 мм; 3 – 3 мм; 4 –

А также по зависимостям коэффициентам прохождения D одномерного коаксиального фотонного кристалла, были определены диэлектрические проницаемости используемых в качестве заполнения коаксиальной линии слоев. В результате было установлено, что диэлектрическая проницаемость капролона равна $\varepsilon \approx 2$, эбонита $\varepsilon \approx 2$,6(рисунок 9-10)

Рисунок 9 Частотные зависимости коэффициента прохождения *D* одномерного коаксиального фотонного кристалла с заполнением воздухкапролон: (1) экспериментального образца, (2) подобранного в САПР с наиболее подходящими параметрами

Рисунок 10 Частотные зависимости коэффициента прохождения *D* одномерного коаксиального фотонного кристалла с заполнением воздухэбонит: (1) подобранного в САПР с наиболее подходящими параметрами, (2) экспериментального образца *В заключении* приведены основные результаты и сформулированы выводы бакалаврской работы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ БАКАЛАВРСКОЙ РАБОТЫ

Таким образом, в ходе выполнения бакалаврской работы:

- 1.Проведено компьютерное моделирование спектров прохождения одномерных коаксиальных фотонных кристаллов СВЧ-диапазона при изменении параметров слоев, а также при наличии в них нарушений периодичности в виде измененной длины центрального слоя.
- 2.Установлено, что при изменении тех или иных параметров слоев диэлектрического заполнения коаксиальной линии, фотонная «запрещенная зона» может изменять свое положение по частотному диапазону, а также изменяется ее ширина и глубина. При создании нарушения периодичности в одномерных коаксиальных фотонных кристаллах в виде изменения толщины центрального слоя приводит к появлению узкого «окна прозрачности» в «запрещенной зоне» коаксиального фотонного кристалла. При этом частотное положение и форма «окна прозрачности» зависит от ширины слоя нарушения.
- 3. Представлены результаты экспериментальных исследований СВЧ-излучения с одномерными взаимодействия коаксиальными фотонными кристаллами, с двумя видами диэлектрического заполнения, в частотном диапазоне 0,4-7 ГГц. Экспериментально исследован спектр прохождения электромагнитного излучения СВЧвзаимодействующего с одномерными коаксиальными диапазона, фотонными кристаллами, содержащими нарушения периодичности в виде измененной длины центрального слоя.
- На основании полученных результатов была определена диэлектрическая проницаемость слоев внутреннего диэлектрического заполнения коаксиальной линии.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Пономарев Д. В. Особенности взаимодействия СВЧ-излучения с фотонными кристаллами, содержащими в качестве неоднородностей диэлектрические, полупроводниковые и металлические включения. Саратов, 2012.–139с.

2. Yablonovitch E. Photonic band-gap crystals// Journal of Physics-Condensed Matter. 1993. Vol.5, no.16. pp. 2443–2460.

3. Усанов Д.А., Скрипаль А.В., Абрамов А.В., Боголюбов А.С., Куликов М.Ю., Пономарев Д.В. Микрополосковые фотонные кристаллы и их использование для измерения параметров жидкостей. Саратов, 2014.–.38с.

4. Усанов Д. А., Скрипаль А. В., Пономарев Д. В. Фотонные кристаллы СВЧ-диапазона и их использование для измерения параметров материалов. Саратов, 2014. –32 с.