# Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нефтехимии и техногенной безопасности

## Модернизация установки биологической очистки сточных вод НПЗ путем замены аэротенков на окситенки

### АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

| студентки4_ курса           | 431 группы                                     |                   |
|-----------------------------|------------------------------------------------|-------------------|
|                             | «Химическая техн<br>вание направления, специа. |                   |
| ]                           | Института химии                                |                   |
| Вач                         | уговой Анастасии                               | Николаевны        |
| Научный руководитель        |                                                |                   |
| доцент, к.х.н.              |                                                | В.З.Угланова      |
| должность, уч. ст., уч. зв. | подпись, дата                                  | инициалы, фамилия |
| Заведующий кафедрой         |                                                |                   |
| д.х.н., профессор           |                                                | Р.И. Кузьмина     |
| должность, уч. ст., уч. зв. | подпись, дата                                  | инициалы, фамилия |
|                             | C 2016                                         |                   |

Саратов 2016 год

#### **ВВЕДЕНИЕ**

Современная нефтехимическая промышленность использует большое количество вод, измеряемое миллион кубических метров в сутки. Наряду с этим, эти предприятия сбрасывают большое количество сточных вод в Таким образом, окружающую среду. рациональное комплексное ресурсов является крупной технологической, использование водных технической и экономической задачей.

В зависимости от назначения потребляемой воды условно подразделяется на промышленную и питьевую воды. В каждой из них содержание примесей регламентируется соответственно государственным стандартам. Питьевая вода в первую очередь освобождается от бактерий, к ней предъявляет особое требование в отношении вируса, цвета и запаха. Промышленная вода не должна содержать примеси больше допустимой нормы, которую устанавливали в зависимости от производства, на котором используется вода.

В содержаться очень разнообразные примеси, сточных водах грубодисперсные, коллоидные частицы, минеральные, органические вещества и биологические микроорганизмы. В задаче очистки воды включаются следующие операции: осветление обеззараживание, умягчение, Очистку сточных нефтехимических дегазация И дистилляции. вод производств можно осуществлять различными методами: механическими, химическими, физико-химическими И биологическими. Кроме используют термические методы, приводящиеся к ликвидации сточных вод, а также методы закачки сточных в подземных горизонтах или их захоронении. Применяющие методы очистки сточных могут быть подразделяется на регенеративные, связанные с извлечением примесей, и деструктивные, обуславливающие разрушением примесей. Важное место среди этих методов очистки промышленных и бытовых стоков занимает биологическая очистка. Этот метод основан на способности микроорганизмов утилизировать в

качестве питательных веществ органические соединения, растворенные в сточных водах. Потребление органики может происходить как в присутствии кислорода (аэробная очистка), так и в его отсутствие (анаэробная очистка). Благодаря высокой эффективности данный метод очистки сточных вод получили наиболее широкое распространение.

Следует отметить, что в последние годы в России проводится политика ужесточения законодательства в области очистки сточных вод промышленных объектов. Многие нефтеперерабатывающие предприятия стремятся провести реконструкцию очистных сооружений для того, чтобы соответствовать современным требованиям.

В связи с этим цель выпускной квалификационной работы — повышение эффективности очистки сточных вод от нефтепродуктов, взвешенных веществ, химических веществ путем усовершенствования системы биологической очистки (замены аэротенков I и II ступеней на окситенки) – является актуальной.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1) рассчитать материальный баланс процесса очистки сточных вод до и после модернизации системы биологической очистки;
- 2) рассчитать и сравнить основные параметры аэротенков I и II ступеней и окситенка;
- 3) дать экономическую оценку проекту.

Структура и объем выпускной квалификационной работы (ВКР). ВКР состоит из введения, обзора литературы, двух разделов, в которых представлены расчетные данные, выводов, списка использованных источников и приложения, содержащего чережи. Работа изложена на 59 страницах, содержит 7 рисунков и 9 таблицы, список использованной литературы состоит из 28 наименований.

#### ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Технологическая схема биологической очистки сточных вод НПЗ представлена рисунке 1.

Из приемной камеры К1/К22 стоки самотеком направляются по лотку на решетки - дробилки Д-1/1, Д-1/2. Далее сточные воды поступают в песколовки П-1, П-2. Песок, осевший в конусной части песколовки, с помощью гидроэлеваторов откачивается по трубопроводу К-18 в бункеры обезвоживания Б-1, Б-2, где песок оседает вниз, а верхний слой - вода самотеком по переливной трубе К-19 отводится в приемную камеру К1/К22. Обезвоженный осадок (песок) из бункеров выгружается на автосамосвалы и вывозится в отвал. Сточные воды из песколовок П-1, П-2 по самотечному лотку поступают в камеру К2/К22. Стоки из камеры К2/К22 поступают по дюкерному трубопроводу В распределительную чашу первичных отстойников РЧ-3, откуда двум дюкерным трубопроводам ПО направляются на первичных отстойника ПО-1, ПО-2. Из металлического бункера плавающие вещества вместе с определенным количеством воды поступают в резервуар - жиросборник ЖС-1 по самотечному трубопроводу К-30. Из колодца жиросборника насосами Н-5, Н-14 по напорному трубопроводу К-23 смесь откачивается в камеру 3.

Все осветленные стоки после первичных отстойников ПО-1, ПО-2 по трубопроводу К-22 поступают в камеру смешения и усреднения сточных вод К1/К6. Из камеры К1/К6 стоки по трубопроводу К-6 поступают в двухсекционный смеситель СМ-I/1, СМ-I/2, где происходит усреднение и перемешивания стоков, а так же растворов биогенных добавок, воздухом. Из смесителя СМ-I/1, СМ-I/2, смесь сточной воды самотеком по трубопроводу К-6 поступает в верхний канал аэротенка I ступени, откуда через шибера равномерно распределяется на две секции А-I/1, А-I/2 в распределительные лотки. Из распредлотков стоки поступают в коридоры-смесители, где, смешиваясь с активным илом, подвергаются биологической очистке.

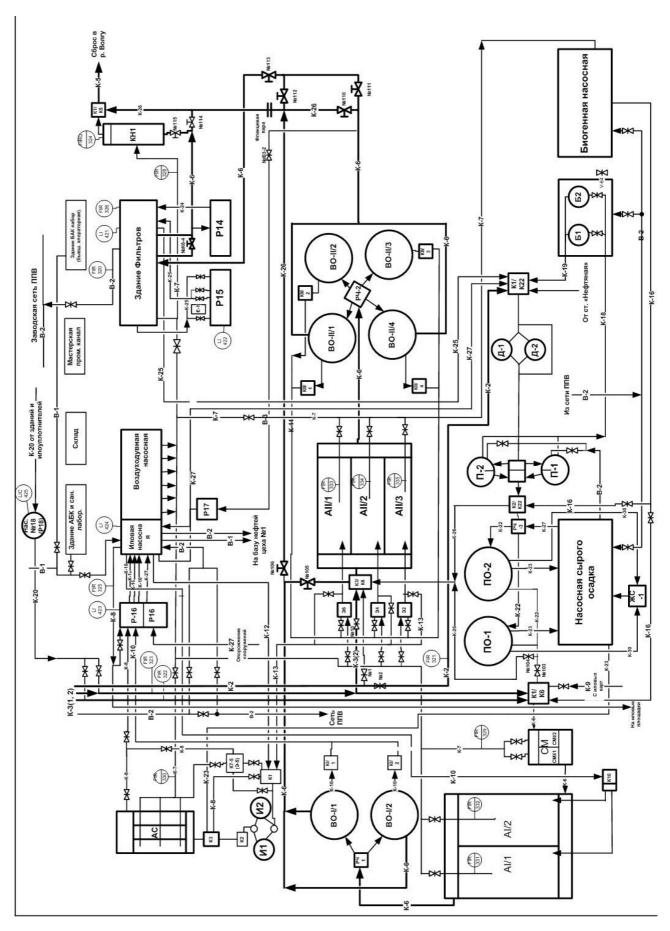



Рисунок 1 — Технологическая схема

биологической очистки сточных вод НПЗ.

Пройдя аэротенк А-І/1, А-І/2, смесь частично очищенных стоков и активного ила поступает в канал иловой смеси и далее по трубопроводу К-6 поступает в распределительную чашу РЧ-1 вторичных отстойников І ступени, равномерно ПО трубопроводам K-6 откуда дюкерным распределяется между двумя вторичными отстойниками ВО-І/1, ВО-І/2. Осевший на дно отстойника активный ил с помощью сосунов, укрепленных на подвижной ферме илососа, направляется по трубопроводу К-10 в камеры выпуска ила К-І/І, К-І/2, оборудованные щитовыми затворами (шиберами), позволяющими регулировать количество отбираемого ила путем изменения уровня перелива. Из камер выпуска ила К-I/l, K-I/2 ил по самотечному трубопроводу К-10 направляется в резервуар активного ила І ступени Р-16, откуда забирается насосами Н-9, Н-10, Н-11, расположенными в иловой насосной, и по трубопроводу К-10 подается в иловою камеру К-10, перед аэротенком I ступени. Далее по самотечному трубопроводу К-10 ил распределяется на два регенератора аэротенка І ступени. Частично очищенные стоки из вторичных отстойников І ступени, собираясь в переферийном сборном лотке, самотеком направляются по трубопроводу К-6 через колодец K2/K6, камеру K3/K6 в распределительный канал аэротенка II ступени, шибера распределительных откуда через лотков стоки направляются в коридоры-смесители AII/1, AII/2, AII/3, где, смешиваясь с активным илом, повторно подвергаются биологической очистке.

Биологическая очистка в аэротенке II ступени происходит аналогично очистке на I ступени. Пройдя аэротенк II ступени, смесь очищенных стоков и активного ила поступает через перелив в отводящий канал, откуда по подземному трубопроводу К-6 направляется в распределительную чашу РЧ-2 отстойников II ступени (третичные). Из распределительной чаши смесь очищенных стоков и активного ила по трубопроводу К-6 поступает в центральные переливные воронки отстойников II ступени ВО П/1, ВО П/2, ВО П/3, ВО П/4.

Устройство отстойников II ступени и принцип работы аналогичен вторичным отстойникам I ступени. Из камер выпуска по самотечному трубопроводу К-П активный ил направляется в камеры эрлифтов Э-2, Э-4, Э-6. Активный ил эрлифтами Э-2, Э-4, Э-6 подается в коридоры - регенераторы аэротенка II ступени. Избыточный активный ил направляется по трубопроводу К-13 в аэробный стабилизатор АС на стабилизацию.

Очищенные сточные воды из отстойников II ступени поступают по самотечному трубопроводу К-6 на кварцевые фильтры, расположенные в здании фильтров. После кварцевых фильтров вода самотеком, по трубопроводу К-6, поступает на две параллельно работающие установки ультрафиолетового облучения УФО-1, УФО-2. Обрабатываемые стоки поступают в камеру облучения, где подвергаются воздействию УФ-излучения

Из аппаратов УФО, по трубопроводу К-6, часть обеззараженных стоков поступает в резервуар фильтрованной воды Р-14, остальные стоки направляются в канал насыщения кислородом КН-1. Насыщение сточной воды кислородом происходит за счет подачи воздуха в фильтросные трубы, уложенные на дно канала. Из канала насыщения очищенные стоки, по трубопроводу, через камеру К-1/5 и далее по коллектору К-5 через рассеивающий выпуск поступают в р. Волга.

В настоящее время на предприятии в блоке БОСВ применяют смесители В аэротенки вытеснители. аэротенках-смесителях И обеспечиваются рассредоточенная подача воды и активного ила и рассредоточенный отвод иловой смеси, благодаря чему происходит моментальное перемешивание сточных активного ВОД поддерживаются постоянными состав иловой смеси и скорость процесса окисления в аэротенке. А в аэротенке-вытеснителе в отличие от аэротенковсмесителей сточная вода поступает в коридор аэротенка с торца и перемещается медленно к торцу противоположной стороны. Благодаря чему они обладают такими достоинствами как высокая скорость окисления,

способность очищать концентрированные сточные воды, отсутствие «проскока» неокисленных загрязнений, простота конструкций.

Однако разработаны и производятся такие составляющие системы БО как окситенки. Сточная вода поступает в зону аэрации по трубе. Под воздействием скоростного напора, развиваемого турбоаэратором, иловая смесь через окна поступает в илоотделитель. Благодаря направляющим щиткам жидкость в илоотделителе медленно движется по окружности. В сочетании перемешивающим устройством все ЭТО значительно интенсифицирует процесс отделения и уплотнения ила. Очищенная вода проходит сквозь слой взвешенного активного ила, доочищается от взвешенных и растворенных органических веществ, поступает в сборный лоток и отводится по трубе. Возвратный активный ил опускается по спирали вниз и через окна поступает в камеру аэрации. Отличительными признаками окситенка являются высокая эффективность использования подаваемого значительное сокращение общего объема кислорода, сооружения в связи с двухцелевым использованием объемов илоотделителя. Благодаря значительному запасу растворенного кислорода в иловой смеси, поступающей в илоотделитель, и ее перемешиванию в циркуляционной зоне одновременно и интенсивно протекают два процесса – биологическое окисление и разделение иловой смеси. В зоне взвешенного фильтра также одновременно протекают два процесса – осветление очищенной воды и доокисление оставшихся органических веществ.

С целью обоснования модернизации системы биологической очистки окситенками проведены расчеты ряда сравнительных параметров. Результаты расчета материального баланса, представленные в таблице 1. Установлено, что степень очистки сточных вод повышается на 15 %, так содержание нефтепродуктов уменьшается на 50 %, взвешенных веществ -42 %, сульфидов – 20 %,аммоний-ионов – 98 %,фенолов – 85 %.

Таблица 1 – результаты расчета материального баланса процесса очистки до и после модернизации

| Наименование        | Аэрог   |         | Аэротенк II<br>ступени |         | Окситенк |         |
|---------------------|---------|---------|------------------------|---------|----------|---------|
|                     | ступени |         |                        |         |          |         |
| компонента          | Приход, | Расход, | Приход                 | Расход, | Приход,  | Расход, |
|                     | кг/ч    | кг/ч    | , кг/ч                 | кг/ч    | кг/ч     | кг/ч    |
| Вода                | 1582319 | 1427144 | 1429754                | 1358581 | 1582319  | 1544056 |
| БПК полн.           | 475     | 143     | 143                    | 27,0    | 475      | 23,0    |
| Взвешенные вещества | 94,9    | 57,1    | 57,1                   | 27,0    | 95,1     | 15,6    |
|                     | 70.0    | 20.6    | 20.6                   | 1.40    | 70.2     | 0.070   |
| Нефтепродукты       | 79,2    | 28,6    | 28,6                   | 1,40    | 79,2     | 0,070   |
| Сульфиды            | 11,1    | 5,70    | 5,70                   | 5,70    | 11,1     | 4,56    |
| Аммоний-ионы        | 19,0    | 11,4    | 11,4                   | 6,80    | 19,0     | 0,060   |
| Фенолы              | 1,58    | 0,140   | 0,140                  | 0,014   | 1,60     | 0,002   |
| Иловая смесь        | -       | 155610  | -                      | 75504   | -        | 38900   |
| Итого               | 1583000 | 1583000 | 1430000                | 1430000 | 1583000  | 1583000 |

Для сравнения эффективности работы аэротенков и окситенка проведены расчеты основных характеристик (таблица 2). Они показали, что аэротенк II ступени и окситенк имеют приближенные к друг другу значения. Удельная скорость окисления составила 10,87 мг·БПКполн/(г·ч) и 11,93 мг·БПКполн/(г·ч). Нагрузка на ил 224,40 мг·БПКполн/(г·сут) и 286,0 мг·БПКполн/(г·сут). При этом концентрация кислорода в окситенке в 2,5 раза больше, чем в аэротенке II ступени, что существенно повышает устойчивость при резких колебаниях состава и расхода сточной воды.

Рассчитаны основные параметры окситенка. Диаметр окситенка  $D_0=30\,$  м, Рабочая глубина  $H_0=5\,$  м, Диаметр зоны аэрации  $D\alpha=21,2\,$  м, Общий объем  $W_{ol}=3532\,$  м $^3.$ Объем зоны аэрации  $W_{al}=1766\,$  м $^3.$ Продолжительность пребывания сточных вод в зоне аэрации  $3,98\,$  ч.

Таблица 2 – Результаты расчета параметров аэротенков и окситенка

|                                 | Аэротенк І | Аэротенк   | Окситенк |  |
|---------------------------------|------------|------------|----------|--|
| Основные характеристики         | ступени    | II ступени |          |  |
| Концентрация растворенного      | 4,0        | 4,0        | 10,0     |  |
| кислорода в воде, мг/л          | ,,,        | -,-        | 10,0     |  |
| Удельная скорость окисления     | 26,74      | 10,87      | 11,93    |  |
| загрязнений мг-БПКполн/(г-ч)    | 20,71      | 10,07      | 11,75    |  |
| Нагрузка на ил, БПКполн/(г∙сут) | 641,71     | 224,40     | 286,0    |  |

Экономический расчет показал, что капитальные вложения составят 11 584 000 руб.: -оборудование – 8 275 000 руб.; -доставка – 827 000 руб.; -монтаж – 993 000 руб.; -НДС – 1489000 руб. Экономия на электроэнергии составит не менее 1312286 руб./год. Период окупаемости проекта – 3 года.

#### ВЫВОДЫ

В работе предложено модернизировать существующую систему биологической очистки стачных вод НПЗ путем замены существующих аэротенков I и II на окситенки. Проведены расчеты материального баланса процесса очистки до и после модернизации, параметров окситенков, капитальных затрат на оборудование, а также его периода окупаемости.

- 1. Произведен расчет материального баланса процесса биологической очистки сточных вод НПЗ до и после модернизации. Установлено, что степень очистки сточных вод повышается, так содержание нефтепродуктов в воде уменьшается на 50 %, взвешенных веществ 42 %, сульфидов 20 %, аммоний-ионов 98 %, фенолов 85 %.
- 2. Расчеты основного аппарата показали, что аэротенк II ступени и окситенк имеют приближенные к друг другу значения. Удельная скорость окисления составила 10,87 мг⋅БПКполн/(г⋅ч) и 11,93 мг⋅БПКполн/(г⋅ч). Нагрузка на ил 224,40 мг⋅БПКполн/(г⋅сут) и 286,0 мг⋅БПКполн/(г⋅сут). При

этом концентрация кислорода в окситенке в 2,5 раза больше, чем в аэротенке II ступени, что существенно повышает устойчивость при резких колебаниях состава и расхода сточной воды.

- 3. Произведен расчет окситенка с мощностью 1583 м $^3$ /ч. Основные параметры окситенка: диаметр D = 30 м, рабочая глубина H=5 м, диаметр зоны аэрации  $D_o$ =21,2 м. Продолжительность пребывания сточных вод в зоне аэрации 3,98 ч
- 3. Экономический расчет показал, что срок окупаемости проекта составит не более 3-х лет.