# Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра нефтехимии и техногенной безопасности

#### Модернизация змеевика трубчатой печи пиролиза углеводородного сырья

## АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

| студентки4 курса                              | 431 группы                                                |                                           |
|-----------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
| -                                             | 1 «Химическая технологи<br>енование направления, специаль |                                           |
|                                               | Института химии                                           |                                           |
| F                                             | Кузьминой Анны Сергеев                                    | НЫ                                        |
|                                               |                                                           |                                           |
|                                               |                                                           |                                           |
| Научный руководитель                          |                                                           |                                           |
| к.х.н., доцент                                |                                                           | С.Б. Ромаденкина                          |
| должность, уч. ст., уч. зв.                   | подпись, дата                                             | инициалы, фамилия                         |
| Заведующий кафедрой                           |                                                           |                                           |
| д.х.н., профессор должность, уч. ст., уч. зв. | подпись, дата                                             | <u>Р.И. Кузьмина</u><br>инициалы, фамилия |
|                                               |                                                           |                                           |

Саратов 2016

# Содержание работы

| Введение                                                                        | 3  |
|---------------------------------------------------------------------------------|----|
| <b>Глава 1.</b> Литературный обзор.  1.1 Теоретические основы процесса пиролиза |    |
| 1.2 Характеристика модификаций процесса пиролиза                                | 11 |
| 1.3 Классификация трубчатых печей.                                              | 11 |
| 1.4 Основные показатели и особенности работы трубчатых печей                    | 13 |
| 1.5 Способы модернизации печей                                                  | 16 |
| Глава 2. Технологические расчеты                                                | 19 |
| 2.1Технологическая схема.                                                       | 19 |
| 2.2Материальный баланс процесса пиролиза                                        | 22 |
| 2.3Расчет процесса горения топлива                                              | 29 |
| 2.4Тепловой баланс печи                                                         | 32 |
| 2.5Расчет действующего типа змеевика                                            | 37 |
| 2.6Расчет закалочно - испарительного аппарат                                    | 40 |
| 2.7 Расчет камеры радиации проектируемого змеевика                              | 41 |
| Выводы                                                                          |    |

#### **ВВЕДЕНИЕ**

Развитие химической промышленности 3a последние несколько десятилетий характеризуются увеличением производства продуктов органического синтеза. В настоящее время четыре углеводорода определяют нефтехимической технический прогресс продуктов промышленности: пропилен, бутадиен, этилен и бензол. Основным источником их производства является процесс термического пиролиза углеводородов. Пиролиз превращение органических соединений в результате деструкции их под действием высокой температуры. К настоящему времени единственным распространенным в промышленности освоенным методом пиролиза является термический пиролиз в трубчатых печах.

Целевой продукт пиролиза — газ, богатый непредельными углеводородами: этиленом, пропиленом, бутадиеном. На основе этих углеводородов получают полимеры для производства пластических масс, синтетических волокон, синтетических каучуков и др. важнейших продуктов. Сырьё для пиролиза весьма разнообразно: от газообразных углеводородов (этана, пропана) до тяжёлых дистиллятов и сырой нефти.

Целью квалификационной работы является усовершенствование змеевика трубчатой печи пиролиза углеводородного сырья.

Термическое разложение углеводородов представляет собой сложный процесс, который можно представить как ряд протекающих последовательно и параллельно химических реакций с образованием большого числа продуктов и в том числе низшие олефины, метан, а также другие алканы меньшей молекулярной массы, чем исходный.

Важнейший параметр процесса температура — определяет степень превращения исходных веществ по реакциям, протекающим при пиролизе, так и распределение продуктов пиролиза. С увеличением температуре в результате первичной реакции повышаются выходы низших олефинов, метана и водорода и снижается выход алканов.

Другим важным параметром пиролиза является время пребывания пиролизуемых веществ в зоне реакции, называемое иногда временем контакта.

Под временем пребывания понимают промежуток времени, в течение которого поток реагирующего вещества находится в реакционном змеевике при таких температурах, когда реакция пиролиза протекает с значительной скоростью. Условной температурой начала реакции в случае углеводородов  $C_5$ - $C_{10}$  (прямогонный бензин) можно считать  $650^{\circ}$ C

#### Основные показатели и особенности работы трубчатых печей

Основными показателями, характеризующими работу трубчатой печи, являются полезная тепловая нагрузка, теплонапряженность поверхности нагрева и топочного пространства, коэффициент полезного действия печи и гидравлические потери напора в трубчатом змеевике.

Важнейшей характеристикой печи является полезная **тепловая нагрузка**. Это количество тепла, воспринимаемого сырьем в печи (кВт или кДж/ч).

Одним из главных показателей, которые характеризует работу трубчатой печи, является теплонапряженность поверхности нагрева, или плотность теплового потока, т.е. количество тепла, переданного через  $1 \text{ м}^2$  поверхности нагрева в единицу времени ( $\text{Вт/м}^2$ ).

Коэффициент полезного действия трубчатой печи — это величина, характеризующая полезно используемую часть тепла, выделенного при сгорании топлива.

Актуальность работы состоит в том, что с помощью процесса пиролиза можно проводить, как переработку: первичного сырья (углеводородный газ, уголь), так и вторичного сырья (автомобильные шины, отработанное масло) с целью получения нефтепродуктов, пригодных для дальнейшей переработки.

#### Основное содержание

#### Исходные данные:

- годовая производительность установки по этилену 250 000 т/год;
- годовой фонд рабочего времени 7632 часов или 318 суток в год (с учетом вычета времени на текущий и капитальный ремонт);
- исходное сырье этановая фракция;
- •производительность одной печи 9000 кг/ч;
- степень конверсии исходного сырья 60 %;
- массовое соотношение водяной пар: сырье составляет 0,3:1;
- потери этилена 5% масс.

На основе приведенных данных составлен материальный баланс действующей печи, результаты представлены в таблице 1.

Таблица 1 Материальный баланс

| Приход   |         |         | I                     | Расход  |         |  |
|----------|---------|---------|-----------------------|---------|---------|--|
| Вещество | масс. % | кг/ч    | Компоненты            | масс. % | кг/ч    |  |
| Метан    | 0,4     | 79,9    | Пирогаз:              |         |         |  |
| Этилен   | 0,2     | 47,9    | Водород               | 3,3     | 685,6   |  |
| Этан     | 76,0    | 15789,6 | Метан                 | 0,9     | 187,0   |  |
| Пропилен | 0,1     | 16,0    | Этилен                | 43,3    | 9000,0  |  |
| Пропан   | 0,2     | 47,9    | Этан                  | 26,4    | 5484,8  |  |
| Водяной  | 23,1    | 4794,4  | Пропилен              | 0,3     | 62,3    |  |
| пар      |         |         | Прочие                | 0,1     | 20,8    |  |
|          |         |         | элементы(в т.ч.       |         |         |  |
|          |         |         | кокс, $C_3$ - $C_5$ ) |         |         |  |
|          |         |         | Водяной пар           | 23,1    | 4790,8  |  |
|          |         |         | Потери                | 2,6     | 544,4   |  |
|          |         |         |                       |         |         |  |
| Итого    | 100     | 20775,7 | Итого                 | 100     | 20775,7 |  |

В ходе данного расчета определены потери, которые составили 2,6%,а также содержание каждого компонента в смеси.

## Тепловой расчет трубчатой печи

В ходе расчета теплового баланса определены основные составляющие прихода и расхода тепла. Потери составили 6%. Данные по расчету представлены в таблице 2.

#### Тепловой баланс печи

| Приход   |     |       | Расход                  |                           |                          |
|----------|-----|-------|-------------------------|---------------------------|--------------------------|
| Поток    | %   | кДж/ч | Поток                   | %                         | кДж/ч                    |
| Qтоплива |     | 65,5  | Qр<br>Qп<br>Qyx<br>Qпот | 21,7<br>58<br>13,9<br>6,4 | 14,2<br>38<br>9,1<br>4,2 |
| Итого    | 100 | 65,5  | Итого                   | 100                       | 65,5                     |

где Qp-тепло, затрачиваемое на нагревание исходной смеси до заданной температуры; Qп-тепло, затрачиваемое на реакции пиролиза; Qyx-тепло, уходящее с дымовыми газами; Qпотпотери .

#### Расчет действующего змеевика

Основные параметры реактора:

- 1. КПД = 79,8%;
- 2.Полная тепловая нагрузка печи 18,2 МВт;
- 3.Средняя теплонапряженность конвекционных труб 37,2 кВт/м<sup>2</sup>
- 4. Реакционный объем змеевика, 4,4 м<sup>3</sup>;
- 5.Размер труб 114х10 мм;
- 6. Рабочая длина одной трубы  $L_p = 11,0 \text{ м}$ ;
- 7. Поверхность нагрева радиационных труб  $S_p \! = 193 \ \text{м}^2.$

На основе данных расчетов определили, что оптимальный вариант- печь типа ГС1, представленная на рисунке 1.

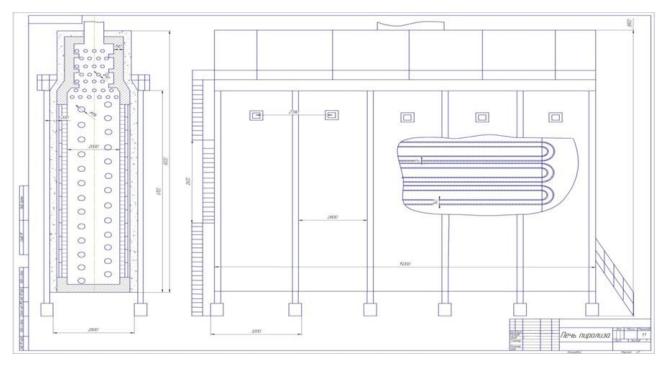



Рисунок 1- Исходная печь типа ГС1

Недостатками данной печи является неравномерность нагрева сырья в процессе и длительное время контакта.

С целью повышения производительности и устранения недостатков заменяем действующий змеевик на проектируемый.

Проектируемый змеевик отличается от исходного наличием дополнительных труб, установленных на выходном участке пирозмеевика в радиантной камере печи. В ходе расчетов было установлено, что при модернизации увеличивается производительность печи на 29% в результате увеличения расхода сырья через пирозмеевики и увеличения скорости нагрева потока до температуры пиролиза и выдержки при этой температуры для увеличения конверсии сырья и повышения выходов продуктов.

Материальный баланс модернизируемого змеевика представлен в таблице 3.

Таблица 3 Материальный баланс модернизируемого змеевика

| Приход   |        | Расход  |                                       |                    |         |
|----------|--------|---------|---------------------------------------|--------------------|---------|
| Вещество | %,масс | кг/ч    | Компоненты                            | %, <sub>масс</sub> | кг/ч    |
| Метан    | 0,4    | 103,3   | Пирогаз:                              |                    |         |
| Этилен   | 0,2    | 62,0    |                                       |                    |         |
| Этан     | 76,0   | 20409,2 | Водород                               | 3,3                | 886,2   |
| Пропилен | 0,1    | 20,6    | Метан                                 | 0,9                | 241,7   |
| Пропан   | 0,2    | 62,0    | Этилен                                | 43,3               | 11633,2 |
| Водяной  | 23,1   | 6197,1  | Этан                                  | 26,4               | 7089,6  |
| пар      |        |         | Пропилен                              | 0,3                | 80,6    |
|          |        |         | Прочие                                | 0,1                | 26,8    |
|          |        |         | элементы(в т.ч.                       |                    |         |
|          |        |         | кокс,С <sub>3</sub> -С <sub>5</sub> ) |                    |         |
|          |        |         | Водяной пар                           | 23,1               | 6192,7  |
|          |        |         | Потери                                | 2,6                | 703,4   |
|          |        |         |                                       |                    |         |
| Итого    | 100    | 26854,2 | Итого                                 | 100                | 26854,2 |

В соответствии с теоретическими и расчетными данными построен чертеж модернизируемой печи, изображенный на рисунке 2.

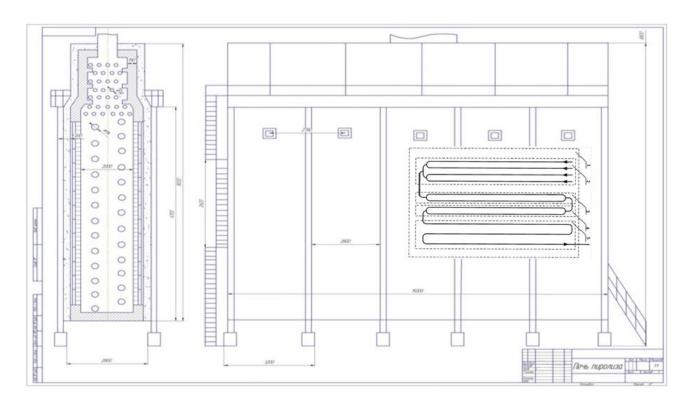



Рисунок 2- Чертеж модернизируемой печи

#### выводы

- 1. Составлены материальные балансы процесса пиролиза, показывающие выход продуктов до и после модернизации печи типа ГС1, рассчитаны тепловой баланс и тепловые потери, которые составили 6%.
- 2.Проведены параметрические расчеты реактора и змеевика печи. Реакционный объем составил 0,63м $^3$ , длина труб 11,3 м, диаметр труб 182x10,4 мм.
- 3. Установлено, что при модернизации, заключающейся в наличии дополнительных труб, установленных на выходном участке пирозмеевика, производительность увеличится на 29%.