Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нефтехимии и техногенной безопасности

Расчет технологии предотвращения температурных вспышек в реакторах гидродеалкилирования на установке получения бензола

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студентки <u>4</u> курса <u>431</u> направления <u>18.03.01</u>		«RY
код и наименование направления,	специальности	
	Института химии	
Γ	Так Георгия Дмитриеви	ча
Научный руководитель		
к.х.н., доцент		И.А. Никифоров
должность, уч. ст., уч. зв.	подпись, дата	инициалы, фамилия
Заведующий кафедрой		
д.х.н., профессор		Р.И. Кузьмина
должность, уч. ст., уч. зв.	подпись, дата	инициалы, фамилия
	Саратов 2016	

Введение

Актуальность работы. Производство бензола основано на переработке целого ряда сырьевых компонентов: нафты, толуола, тяжелой фракции пиролиза, смолы коксования угля, поэтому выпуск бензола ведется как на предприятиях нефтехимии, так и на металлургических заводах. Наиболее чистый бензол получают методом гидродеалкиливания. При проведении сложных технологических процессов у операторов установок могут возникать сомнения в обоснованности поддержания норм технологического режима, с целью достижения высокого качества процесса и безаварийности.

Целью данной квалификационной работы явилось определить термическую устойчивость реактора гидродеалкилирования при изменении входной температуры сырья, и выяснить наиболее эффективный способ охлаждения сырьевой смеси.

Содержание выпускной квалификационной работы.

Выпускная квалификационная работа состоит из введения, теоретического и практического разделов, выводов, приложений и списка использованных источников.

СОДЕРЖАНИЕ

		Стр.
	введение	3
Раздел 1	Литературный обзор	5
1.1	Общие сведения о процессе гидродеалкилирование	5
1.2	Химизм и кинетика процесса гидродеалкилирования	9
1.3	Катализаторы процесса гидродеалкилирования	12
1.4	Параметры влияющие на процесс гидродеалкилирования	13
1.5	Аппаратурное оформление процесса	16
	гидродеалкилирования	
1.5.1	Модели химических реакторов	18
1.5.2	Реакторы процесса гидродеалкилирования	20
Раздел 2	Расчетная часть	26
2.1	Описание технологического процесса	
	гидродеалкилирования	26
2.2	Расчет термической устойчивости реактора	
	гидродеалкилирования	30
2.3	Расчет более эффективного охлаждения реакционной	
	смеси в реакторах гидродеалкилирования	38
	выводы	40
	СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНОКОВ	41

ПРИЛОЖЕНИЯ

Технологическая схема процесса гидродеалкилирования — 1 лист ф. А—3 Чертеж реактора с неподвижным слоем катализатора — 1 лист ф. А—1 Во Введении представлены и описаны основные промышленные способы получения бензола из различного сырья.

В Разделе 1 представлен аналитический обзор литературы, посвященный процессу гидродеалкилирования. Подробно рассмотрено основное назначение процесса, химические основы процесса, сырье и катализаторы процесса гидродеалкилирования, кинетика процесса, аппаратурное оформление процесса, принципиальная технологическая схема, а так же рассмотрены параметры, влияющие на процесс.

Гидродеалкилирование рассматривается как процесс получения ароматических углеводородов (главным образом бензола и нафталина) из их алкилзамещенных под давлением водорода. Сырье для производства бензола это толуол или ксилолы.

В реакторе гидродеалкилирования происходит процесс, состоящий из большого количества химических реакций, протекающих в среде водорода. Основная реакция процесса — гидродеалкилирование алкилароматических (толуола, ксилола) углеводородов, в результате чего получается бензол и побочные продукты:

$$(1) \bigcirc + H_2 \rightarrow CH_4$$

Получение бензола из ксилолов идет в две стадии:

Также могут протекать и нежелательные процессы:

а) разрушение ароматического ядра с образованием метана:

$$(3) \qquad + 10 \text{H}_2 \longrightarrow 7 \text{C H}_4$$

б) конденсация бензола в дифенил:

(4)
$$2$$
 \longrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow

в) распад с образованием кокса

$$(5) \qquad \bigcirc \qquad \longrightarrow \qquad 6C + 3H_2$$

Основными параметрами, влияющими на процесс, являются: температура, давление, объемная скорость, соотношение водород/ароматические углеводороды.

а) Температура

Реакции (1) и (2) — экзотермические, протекают с небольшим тепловым эффектом (50 кДж/моль). Поэтому увеличение температуры смещает равновесие в сторону образования алкилбензолов. Вместе с тем низкотемпературный режим связан с низкой скоростью реакции (по Аррениусу). Поэтому оптимальная температура процесса подбирается с учетом кинетических и термодинамических ограничений.

Также при выборе температуры проведения процесса необходимо учитывать температуру зажигания катализатора. Алюмохромовый катализатор проявляет активность в следующем интервале температур: 550–680°C.

б) Давление

Реакции (1), (2) протекают без изменения объема, поэтому давление не должно оказывать влияния на равновесие. Однако в связи с кинетическими особенностями в промышленных масштабах реакцию проводят под давлением 5–7 МПа. Реакция (3) идет с уменьшением объема, увеличение давления приводит к смещению равновесия в сторону образования метана, поэтому давление выше 7 МПа нежелательно. Однако, уменьшать давление ниже 5 МПа

нецелесообразно, так как понижение общего давления приводит к понижению парциальных давлений компонентов, скорость реакции уменьшается.

в) Объемная скорость подачи сырья

Объемная скорость подачи сырья влияет на время контакта. Увеличение объемной скорости сырья, вызывает уменьшение времени контакта и наоборот. При увеличении объемной скорости сырья необходимо пропорционально увеличивать количество циркулирующего водорода, чтобы соотношение водород/ароматические углеводороды было поддержано на его рабочей величине. Увеличение времени контакта приводит к более высокому выходу бензола. Во всех промышленных процессах значение объемной скорости составляет 0,5–1,5 ч⁻¹.

г) Соотношение водород/ароматические углеводороды

Увеличение парциального давления водорода в смеси смещает равновесие в сторону продуктов в реакциях (1), (2), следовательно, повышается выход бензола.

Так же в первом разделе была рассмотрена кинетика процесса:

Скорость реакции гидродеалкилирования толуола на поверхности катализатора определяется выражением

$$\omega = \frac{k_s \cdot K_T \cdot p_T \cdot p_{H_2}}{(1 + K_T \cdot p_T)^2}$$

где — скорость химической реакции,
$$\frac{\text{моль}}{\text{с}\cdot\text{м}^3(\kappa amaлизamopa)};$$

$$k_{\mathfrak{S}}$$
 – константа скорости реакции, $\frac{\text{моль}}{\text{с}\cdot\text{м}^3(\kappa amaлизamopa)}\cdot\text{атм}^{-1};$

 K_{T-} коэффициент адсорбции толуола на катализаторе, атм⁻¹;

 p_{A} и — парциальные давления алкилбензолов и водорода в смеси соответственно, атм.

Зависимость константы скорости реакции от температуры определяется уравнением Аррениуса:

$$k_s = k_o exp\left(-\frac{E_a}{RT}\right)$$

где k_{0} – эмпирический множитель, выраженный в единицах измерения константы скорости реакции;

 E_{a} – энергия активации реакции, Дж/моль;

R — универсальная газовая постоянная, Дж/моль·К;

T – температура, К.

Коэффициент адсорбции K_T представляет собой константу равновесия процесса адсорбции, он связан с теплотой адсорбции следующим соотношением:

где K_0 – константа, атм⁻¹;

– теплота адсорбции, Дж/моль.

В Разделе 2 была рассмотрена технологическая схема процесса гидродеалкилирования применяемая на производстве и ее подробное описание схемы, и рассмотрена проблема — температурные вспышки в реакторах гидродеалкилирования, так же был проведен расчет термической устойчивости реактора, и рассчитан наиболее эффективный способ охлаждения сырьевой смеси.

Реакторы с неподвижным слоем катализатора приближаются к режиму идеального вытеснения, но проектирование такого реакторов крайне сложно. Поэтому в основе расчета реакторов была положена модель каскада реакторов идеального смешения. Для этого аппарат условно разделяется на несколько ячеек. Для расчета каждой ячейки используется проектное уравнение для реактора идеального смешения с учетом того, что реакция протекает на поверхности катализатора объемом V. Объем каждой ячейки равен объему помещенного в нее катализатора. Степень превращения в каждой ячейке определяется по формуле:

$$\alpha = \frac{\omega \cdot \alpha \cdot V}{F_{A_0}}$$

где **a** — относительная активность катализатора, равная отношению скоростей реакций, протекающих на закоксованном и на свежем катализаторе;

V- объем катализатора, M^3 ;

- мольный расход исходного компонента, моль/с;
- ω скорость химической реакции, моль/ с · м³ (катализатора).

Относительная активность катализатора зависит от содержания на нем кокса. Так как в реакторе с движущимся слоем происходит непрерывная регенерация катализатора, то изменением его активности в слое можно пренебречь. Тогда в модели реактора с движущимся слоем активность катализатора в уравнении принимается равной 1.

В модели реактора с неподвижным слоем используется средняя активность катализатора за межрегенерационный период, которая определяется уравнением:

 A_{\bullet} – линейная составляющая, определяющая число активных центров;

 β- коэффициент отравления, нелинейная составляющая, зависящая от соотношения кислотных и основных центров катализатора; концентрация кокса на катализаторе в середине межрегенерационного цикла, масс. %.

Реакция идет с выделением тепла. Тепловой эффект равен 50 кДж/моль. Скорость химической реакции рассчитывается по уравнению с учетом изменения температуры в слое катализатора.

Изменение температуры в каждой ячейке реактора вычисляется из выражения для теплового баланса, которое имеет вид

$$Q_1 + Q_2 - Q_3 = Q_4$$

где Q_I — тепло, поступающее в реактор с сырьем, Дж/с;

 Q_2 — тепло, выделяющееся в процессе реакции, Дж/с;

 Q_3 - потери теплоты в окружающую среду, Дж/с;

 Q_4 – тепло, уносимое продуктами из реактора, Дж/с.

 Q_I находим по формуле

$$Q = F_{AO} \cdot c_p \cdot T$$

где F_{AO} — мольный расход парогазовой смеси, поступающей в реактор, моль/с;

 c_p — средняя теплоемкость парогазовой смеси, поступающей в реактор, Дж/моль·К;

T – температура на входе в реактор, К.

 Q_2 находим по формуле:

$$Q = F_{{\scriptscriptstyle A}{\scriptscriptstyle 0}} \cdot \alpha \cdot \Delta H$$

где ΔH – тепловой эффект реакции, Дж/моль.

Для расчета были приняты следующие исходные данные: производительность установки по сырью $-15\,$ м 3 /ч; плотность сырья $-871\,$ кг/м 3 ; температура процесса $-500\,$ - 650°с; давление процесса $-55\,$ атм; мольное соотношение водород/сырье -5/1.

На производстве в качестве охлаждения реакционной смеси, используют холодный толуол или ВСГ.

Для расчета более эффективного охладителя реакционной смеси примем, что в исходную смесь добавили 1 кг охладителя (толуола или водорода), с температурой T=50 °C и проводили расчет аналогично расчетам термической устойчивости.

На основе расчетов была построена зависимость тепловыделения и теплосъема от температуры.

В итоге проделанной работы были сделаны следующие выводы:

- 1) Определили термическую устойчивость реактора гидродеалкилирования. Установлено, что при снижении входной температуры, ниже 585 °C, реактор самопроизвольно охлаждается за счет рассеивания теплоты в окружающую среду. При превышении этой температуры реактор самопроизвольно разогревается и температура выходит за регламентный режим, что может привести к аварийным ситуациям. Следовательно наиболее стабильная температура Т = 585 °C, при этом теплота химической реакции равна теплосъему, однако при этой температуре степень превращения 55%, что недостаточно для производства, поэтому на заводе используют температуры Т=600-620 °C, однако поддержание этой температуры требует сложных технических решений, а именно подача холодного толуола или ВСГ.
- 2) Для выяснения наиболее эффективного способа охлаждения реакционной смеси, был проведен расчет, который показал, что ВСГ примерно в 2 раза более эффективно охлаждает реактор гидродеалкилирования чем толуол.