Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра нефтехимии и техногенной безопасности

Оценка степени опасности цеха азотоснабжения химически опасного объекта

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 ку	pca 441	группы								
направления20.03.01 «Техносферная безопасность»										
код и наименование направления, специальности										
Института химии										
Войко Александра Владимировича										
Научный руководитель										
доцент, к.воен	І.Н.		М.И. Иван	<u> ІЮКОВ</u>						
должность, уч. ст., уч. зв.	. подпи	сь, дата	инициалы, фамилия							
Заведующий кафе	дрой									
д.х.н., профессо	<u>pp</u>		Р.И. Кузьмина							
должность, уч. ст., уч. зв.	. подп	ись, дата	инициалы, фамилия							

ВВЕДЕНИЕ

Актуальность выпускной квалификационной работы заключается в выработке рекомендаций по повышению степени безопасности цеха азотоснабжения.

Основной целью выпускной квалификационной работы является анализ и оценка возможных чрезвычайных ситуаций во вспомогательном структурном подразделении химически опасного объекта и выработки предложений по повышению безопасности цеха.

Для выполнения поставленных целей, были решены следующие задачи:

- анализ возможных чрезвычайных ситуаций;
- построение «Древо событий»;
- разработка сценариев чрезвычайных ситуаций;
- расчет интенсивность теплового излучения при образовании пожара и зоны поражения;
- расчет индивидуального и коллективного рисков;
- разработка предложений по уменьшению опасностей в цехе.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении рассмотрена актуальность выработки предложений по повышению безопасности цеха и необходимость расчетов интенсивности теплового излучения, зон поражения, индивидуального и количесственного рисков.

Содержание 1 главы: в разделе приводятся общие сведения о цехе и о производстве его продукта. Описана технологическая схема получения азота. Приводятся физико-химические свойства некоторых видов сырья,

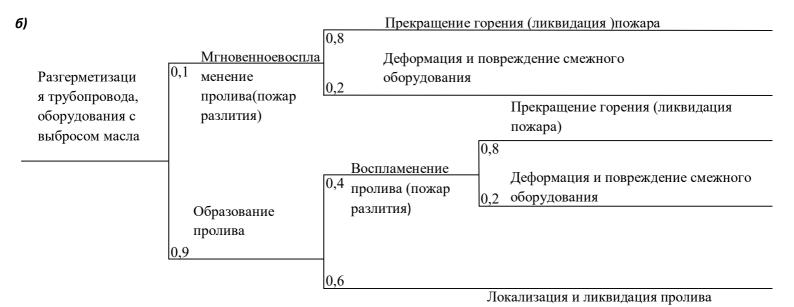
материалов, готовой продукции применяемых в технологическом процессе, таких как: азот, компрессионное масло, жидкий кислород.

Содержание 2 главы: в данном разделе рассматривается «древа событий» и прослеживание самого вероятного сценария развития чрезвычайной ситуации. После переходим к расчету максимально вероятного развития чрезвычайной ситуации. В него входят:

- Расчет интенсивности теплового излучения при воспламенении разлива масла;
- Расчет индивидуального и коллективного рисков.

Содержание 3 главы: в разделе предложен метод, а также предложены мероприятия по снижению индивидуального и коллективного рисков.

1. Общие сведения о цехе и производимой продукции


Цех получения азота методом глубокого охлаждения воздуха введен в эксплуатацию в 1952 году. Мощность производства составляет 3500 м³/ч. Цех производит азот двух марок, азот марки А (99,9 %об) используется в качестве газ-носителя при проведении хроматографических в лабораториях предприятия и азот марки марки Б (99,0 %об) используется для продувок и опресовок оборудования перед подготовкой их к ремонту и включением в работу, для создания азотных подушек в емкостях с горючими взрывоопасными продуктами, для поддавливания горючих жидкостей и газов при передаче в другое оборудование.

2 «Древо событий» при аварии

Для того чтобы оценить степень опасности аварии, потребуется составить «древо событий», проследить самый вероятный сценарий развития аварии и далее отталкиваясь от этого сценария проводить соответствующие расчеты.

Исходя из данных полученных на производстве, составлено вероятное «древо событий»:

На основании наиболее опасного сценария возникновения аварии, а именно, разгерметизация трубопровода, оборудования с выбросом масла, рассчитывается интенсивность теплового излучения и зоны термического поражения.

2.1 Расчет интенсивности теплового излучения и зон термического поражения

Интенсивность теплового излучения q, кВт/м², рассчитывают по формуле:

$$q = E_f F_q t , (1)$$

где E_f - среднеповерхностная плотность теплового излучения пламени, $\kappa \mathrm{Br/m}^2$;

 F_q - угловой коэффициент облученности;

t - коэффициент пропускания атмосферы.

Значение E_f принимают на основе имеющихся экспериментальных данных. Для некоторых жидких углеводородных топлив указанные данные приведены в таблица 1.

Таблица 1. Среднеповерхностная плотность теплового излучения пламени в зависимости от диаметра очага и удельная массовая скорость выгорания для некоторых жидких углеводородных топлив

Топливо		E_f , кЕ	m , $\kappa\Gamma/(M^2 c)$			
	10	20	30	40	50	
СПГ (метан)	220	180	150	130	120	0.08
СУГ (пропан-бутан)	80	63	50	43	40	0,1
Бензин	60	47	35	28	25	0,06
Дизельное топливо	40	32	25	21	18	0,04
Нефть	25	19	15	12	10	0,04

Примечание: для диаметров очага менее 10 м или более 50 м следует принимать E_f такой же, как и для очагов диаметром 10 м и 50 м соответственно.

При отсутствии данных допускается E_f принимать равной 100 кВт/м 2 для сниженных углеводородных газов и 40 кВт/м 2 для нефтепродуктов.

Эффективный диаметр пролива <math>d, м рассчитывают, по формуле :

$$d = \sqrt{\frac{4S}{\pi}} \tag{2}$$

где S - площадь пролива, M^2 .

 π – принимаем как 3.14

Высоту пламени H, м рассчитывают, по формуле :

$$H = 42d \left(\frac{m}{r_{\rm R}\sqrt{gd}}\right),\tag{3}$$

где m - удельная массовая скорость выгорания топлива, кг/(м 2 ·с);

 r_e - плотность окружающего воздуха, кг/м³;

g - ускорение свободного падения, равное 9,81 м/с².

Угловой коэффициент облученности $F_q\,$ определяют по формуле :

$$F_{q} = \sqrt{F_{v}^{2} + F_{H}^{2}}, \tag{4}$$

$$\Gamma_{\mathcal{V}} = \frac{1}{\pi} \left[\frac{1}{S_{\mathbf{1}}} \operatorname{arctg} \left(\frac{h}{\sqrt{S_{\mathbf{1}}^2 - \mathbf{1}}} \right) + \frac{h}{S_{\mathbf{1}}} \left\{ \operatorname{arctg} \left(\sqrt{\frac{S_{\mathbf{1}} - \mathbf{1}}{S_{\mathbf{1} + \mathbf{1}}}} \right) - \frac{A}{\sqrt{A^2 - \mathbf{1}}} \operatorname{arctg} \left(\sqrt{\frac{(A + \mathbf{1})(S_{\mathbf{1}} - \mathbf{1})}{(A - \mathbf{1})(S_{\mathbf{1}} + \mathbf{1})}} \right) \right\} \right]$$
(5)

$$A = \frac{(h^2 S_1^2 + 1)}{2S_1},$$
 (6)

 $S_1 = \frac{2r}{d}$, (7) (*r* - расстояние от геометрического центра пролива до облучаемого объекта),

$$h = \frac{2H}{d},\tag{8}$$

$$F_{H} = \frac{1}{\pi} \left[\frac{\left(B - \frac{1}{S_{1}}\right)}{\sqrt{B^{2} - 1}} \operatorname{arct} g\left(\sqrt{\frac{(B+1)(S_{1} - 1)}{(B-1)(S_{1} + 1)}}\right) - \frac{\left(A - \frac{1}{S_{1}}\right)}{\sqrt{A^{2} - 1}} \operatorname{arct} g\left(\sqrt{\frac{(A+1)(S_{1} - 1)}{(A-1)(S_{1} + 1)}}\right) \right]$$

$$, (9)$$

$$B = \frac{(1 + S^2)}{(2S)}, \tag{10}$$

коэффициент пропускания атмосферы t определяют по формуле:

$$t = exp[-7.0 \cdot 10^{-4}(r - 0.5d)], \tag{11}$$

Все приведённые формулы необходимы для проведения конкретных расчётов.

2.2. Результаты расчетов

Результаты расчетов по приведенной методике, расписанной в пункте 2.1, приведены в виде итоговой таблице.

Величины			Результаты расчета					
r ₁ =2.3 м								
A_1	B_1		S_1	6.24	24 1			1.01
F_{v}	$F_{\scriptscriptstyle H}$	F_q	F_{f}	1.12	-0	.02	1.11	40
t			1					
q(кВт/м ²)			45					
r ₂ =3.3 м								
A_2		B_2	S_2	6.05		1.07		1.46
F_{v}	F _H	F	q F _f	-0.71	0	0.9		40

$q(\kappa B_T/m^2)$				36						
	r ₃ =4.8 м									
A_3]	B_3	S_3	3.81		1.29	2.12			
F_{v}	F _H	Fq	F_{f}	0.5	0.3	0.6	40			
	$q(\kappa B_T/M^2)$				24					
	r ₄ =10 м									
A_4]	B_4	S_4	3.53		2.32	4.43			
$F_{\rm v}$	F _H	F_q	F_{f}	0.0033	0.03	0.03	40			
$q(\kappa B_T/M^2)$				1.2						

2.3 Расчет индивидуального и коллективного рисков

2.3.1 Индивидуальный риск

Уровень обеспечения безопасности людей при пожарах отвечает требуемому, если:

$$Q_{\rm B} \le Q_{\rm B}^{\rm H}$$
. (12)

$$Q^{\sf H}_{\sf B}$$
 - нормируемый индивидуальный риск, $Q^{\sf H}_{\sf B} = 10^{-6}~{\rm год}^{-1}$

Расчетный индивидуальный риск Q_{e} в каждом здании рассчитывают по формуле

$$Q_{B}=Q_{n}P_{np}(1-P_{3})(1-P_{n.3}), \qquad (13)$$

где Q_n - вероятность пожара в здании в год;

 $P_{\it np}$ - вероятность присутствия людей в здании, при работе:

0,33 - в одну смену;

0,67 - в две смены;

1,00 - в три смены;

 $P_{\mathfrak{I}}$ - вероятность эвакуации людей;

 $P_{n,3}$ - вероятность эффективной работы технических решений противопожарной защиты.

Вероятность эвакуации P_9 рассчитывают по формуле

$$P_3=1-(1-P_{0.n})(1-P_{0.6}),$$
 (14)

где $P_{\scriptscriptstyle 9.n}$ - вероятность эвакуации по эвакуационным путям;

 $P_{\it d.6}$ - вероятность эвакуации по наружным эвакуационным лестницам, переходам в смежные секции здания.

Вероятность $P_{3,n}$ рассчитывают по формуле

(15)

где $t_{\delta n}$ - время от начала пожара до блокирования эвакуационных путей в результате распространения на них ОФП, имеющих предельно допустимые для людей значения, мин;

 t_p - расчетное время эвакуации людей, мин;

 $t_{\scriptscriptstyle H.9}$ - интервал времени от возникновения пожара до начала эвакуации людей, мин.

После проведения предварительных расчетов и подстановки исходных данных, определяем индивидуальный риск по формуле (13)

$$Q_{\rm B}=1.6 \cdot 10^{-4}$$

2.3.2 Расчет коллективного риска

$$R_{\text{колл}}$$
 (16)

где:

Р*i* -- количество погибших при реализации і-того сценария аварии;

Ni -- вероятность реализации і-того сценария аварии в течение года; $R_{\text{колл}} = 1.6 \cdot 10^{-3}$

Вывод

По результатам расчета установлено, что при интенсивности теплового излучения равного 45 кВт/м² зона термического поражения открытым пламенем составляет 2.3 метра. При интенсивности теплового излучения равного 36 кВт/м² внешняя граница зоны разрушений металлических конструкций составляет 3.3 метра. При интенсивности теплового излучения равного 24 кВт/м² внешняя граница зоны смертельного поражения составляет 4.8 метра. Предельно безопасное эвакуационное расстояние при тепловом изучении 1.4 кВт/м², составляет 10 метров.

В результате расчета индивидуального риска установили, что нормы риска превышены $(1.6 \cdot 10^{-4} \text{ при допустимом } 10^{-6})$, из этого следует, что цех является потенциально опасным для обслуживающего персонала.