Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВОТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Ертыгаев Алексей АлександровичГЕОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ ДОРАЗВЕДКИЗАЛЕЖЕЙ ВОСТОЧНОГО БЛОКА ДАВЫДОВСКОГО МЕСТОРОЖДЕНИЯ

(Оренбургская область)

130304 Специальность Геология нефти и газа
Автореферат
Дипломной работы специалиста

Общая характеристика работы

Объект исследования восточный блок Давыдовского месторождения расположенный на территории Первомайского района Оренбургской области, в восточной части Зайкинско-Росташинской зоны поднятий южного борта Бузулукской впадины.

Цели и задачи работы. Целью работы является геологическое обоснование доразведки залежей восточного блока Давыдовского месторождения, с которыми связаны основные запасы месторождения, значительная часть которых оценены по категории C_2 .

Задачи работы: Сбор геолого-геофизических материалов характеризующих геологическое строение и нефтеносность месторождения; геолого-геофизических материалов; Анализ собранных выработка блока Давыдовского рекомендаций до-разведке восточного ПО месторождения.

Фактический материал. При подготовке дипломной работы использован фактический материал, собранный автором во время преддипломной практики (результаты геолого-геофизическихисследований) а так же опубликованные источники по геологии и нефтегазаносности Волго-Уральской нефтегазоносной провинции.

Объем работы. Дипломная работа состоит из введения, 5 глав, заключения, списка использованной литературы и содержит 46 страниц текста,1 таблицы, 2 рисунка,6 графических приложений. Список использованных источников включает 21 наименований.

Содержание работы

Глава 1 История геолого-геофизического изучения Давыдовского месторождения.

Геолого-геофизические исследования на территории Оренбургской области проводятся вот уже более 70 лет. Южная часть Оренбургской области, где открыто Давыдовское месторождение, первоначально была исследована региональными работами: магниторазведкой, гравиразведкой и структурно-геологической съемкой. По результатам указанных работ были получены общие представления о строении региона. По данным структурно-геологической съемки отмечено ступенчатое погружение мезозойских образований в южном направлении. Одна из таких ступеней получила название Камелик-Чаганской флексуры. На приподнятом крыле этой флексуры были выявлены Конновское, Росташинское, Давыдовское, Мало-Чаганское и др. поднятия [1].

В 1950-60х г. на изучаемой территории проводилась электроразведка методом ВЭЗ, ЗСМ, ЗСТ, МТП и МТЗ, которыми установлено погружение опорного электрического горизонта, приуроченного к кровле сосновской свиты, в юго-западном направлении. На фоне общего погружения подтверждены, выявленные геологической съемкой Камелик-Чаганская флексура и Токаревский региональный разлом [1].

Аэромагнитная съемка (1955-1958 г.г.) выявила положительную магнитную аномалию, отождествляемую с Камелик-Чаганским выступом кристаллического фундамента [1].

В 1959-1962 г.г. на изучаемой территории проведено структурное бурение, которым было установлено несоответствие структурных планов мезозойских и верхнепермских отложений. Это связано с нижнеказанским некомпенсированным прогибанием, которое определило резкое сокращение толщины гидрохимической свиты в западном направлении [1].

Сейсморазведочными работами, проводившимися в 1976-81гг. были выявлены Давыдовское и Мало-Чаганское поднятия. Интерес к этому району возрос после открытия в 1982 г. Росташинского и Зайкинского месторождений, расположенных западнее Давыдовского поднятия [2].

С целью уточнения геологического строения Давыдовского поднятия СП 9 в 1983, 1987, 1989 г.г. проводились детальные сейсморазведочные работы, материалы которых увязывались с данными бурящихся поисковоразведочных скважин. На структурных картах масштаба 1:50000 Давыдовское поднятие представлено в виде блоков, разграниченных линеаментными зонами субширотного и субмеридианального простирания [2].

Трехмерные сейсморазведочные работы МОГТ на Давыдовском месторождении проведены Давыдовской СП 9/99 в 1999 году и охватили только его крайнюю западную часть — зону сочленения с Росташинским месторождением. Были выявлены основные структурные элементы этой зоны: юго-восточное окончание Росташинского поднятия, осложненное рядом куполов и Западно-Давыдовское и Северо-Давыдовское поднятия. Выделены фрагменты тектонических нарушений протяженностью от 0,5 до 2,5 км. Региональное тектоническое нарушение (фрагмент Токаревского разлома) данными работами захвачено лишь в крайней юго-западной части изучаемой площади. В отношении задачи уточнения контуров залежей задача осталась практически не решенной [3].

Бурение поисковых скважин было начато в 1984 г., а в 1986 г. при опробовании перфорацией пласта Д₅ в скв.№2 был получен фонтанный приток нефти с газом.

Таким образом, Давыдовское месторождение было открыто в 1986 г. Запасы нефти были поставлены на государственный баланс в оперативном порядке в 1987г. Месторождение введено в эксплуатацию в 1994 году.

С 1997 года на месторождении ведется эксплуатационное бурение, пробурено 4 эксплуатационных скважины №2707 (эксплуатирует пласт Д₅ с 2.1997), №2709 (эксплуатирует пласт Д₅ с 10.1997), №2712 (в бездействии на Π_{IV} с 01.2002) и №2713 (эксплуатирует пласт Π_{5} с 8.2003) [4,5].

В 2004 г. был выполнен пересчет начальных запасов нефти и растворенного газа, в котором были учтены результаты сейсморазведочных работ методом 3D, выполненных на месторождении в 1999-2000 годах, и данные, полученные при бурении новой скважины (скв.2713 в 2003) [6,7].

В 2007г. в пределах Давыдовского месторождения проведены детализационные сейсморазведочные работы 3D, позволившие значительно уточнить геологическое строение площади [8]. По данным интерпретации данных 3Д сейсморазведочных работ выделены и протрассированы тектонические нарушения и зоны микродислокаций, составлена структурнотектоническая модель месторождения.

В целом состояние изученности месторождения, с учетом сложного геологического строения, следует оценить как недостаточное.

За время, прошедшее с момента составления последнего проектного документа накопилось достаточно много новой геолого-геофизической информации. В 2007 году на площади были проведены детализационные сейсморазведочные работы МОГТ 3D, пробурены эксплуатационные скважины 2713 и 2717, выполнена переинтерпретация данных ГИС.

Глава 2 Литолого-стратиграфическая характеристика разреза

В строении фундамента изучаемого месторождения принимают участие породы архейского возраста. Осадочный чехол представлен терригенно-карбонатными отложениями палеозойской, мезозойской и кайнозойской эратем.

Архейская акротема

Породы этого возраста слагают кристаллический фундамент и представлены зеленовато-серыми, белыми и красными гранитами и гранитогнейсами, крупно и среднекристаллическими.

Палеозойская эратема

Девонская система

Нижний отдел

Эмсский ярус

Верхний подъярус

Койвенский горизонт

Залегает горизонт на размытой поверхности фундамента. Сложен разнозернистыми песчаниками с прослоями аргиллитов и алевролитов. Толшина 20-30 м.

Средний отдел

Эйфельский ярус

Представлен ярус отложениями бийского, мосоловского и черноярского горизонтов.

Нижний подъярус

Бийский горизонт

Отложения бийского горизонта представлены известняками в различной степени глинистыми. Толщина 60-80 м.

Верхний подъярус

Мосоловский горизонт

Накоплению пород мосоловского горизонта предшествовал перерыв в осадконакоплении. Представлен горизонт известняками с редкими прослоями аргиллитов. Толщина 170-180 м.

Черноярский горизонт

Сложен горизонт аргиллитами с тонкими единичными прослоями известняков. Толшина 55-65 м.

Живетский ярус

Представлен ярус старооскольским надгоризонтом с отложениями воробьевского, ардатовского и муллинского горизонтов.

Старооскольский надгоризонт

Воробьевский горизонт

Накоплению пород воробьевского горизонта предшествовал перерыв в осадконакоплении. По литологии слагающих его отложений делится на три пачки. Нижняя пачка толщиной 20-30 м сложена терригенными породами-песчаниками, алевролитами, аргиллитами. Средняя пачка сложена глинистыми известняками. В верхней части преимущественно развиты аргиллиты. Толщина 43 - 59 м.

Ардатовский горизонт

Горизонт несогласно залегает на размытой поверхности воробьевского горизонта. В нижней части отложения ардатовского возраста сложены песчаниками и алевролитами с прослоями аргиллитов. Выше по разрезу залегает глинисто-карбонатная пачка, представленная переслаиванием аргиллитов и плотных карбонатов.

Толшина 91-105 м.

Муллинский горизонт

Представлен горизонт аргиллитами. В своде структур – известняки.

Толшина 0-23 м.

Верхний отдел

Франский ярус

Отложения франского яруса наряду с муллинскими отложениями были подвергнуты глубокой эрозии. В восточной части месторождения в разрезе верхнего девона отсутствуют пашийские и тиманские отложения, а в скв.1 и 3 размыты даже отложения саргаевского и семилукского горизонтов. Сохранившиеся пашийские, тиманские, саргаевские и семилукские отложения горизонтов представлены не в полном стратиграфическом объеме.

Нижний подъярус

Пашийский + тиманский горизонты

Нерасчлененные отложения пашийского и тиманского горизонтов представлены переслаиванием алевролитов и аргиллитов с редкими прослоями песчаников. Толщина 0-34 м.

Средний подъярус

Семилукский + саргаевский горизонты

Нерасчлененные отложения семилукского и саргаевского горизонтов сложены известняками и доломитами.

Верхний подъярус

Воронежский + евлановский + ливенский горизонты

Представлены горизонты известняками серыми. Толщина 65-125 м.

Фаменский ярус

Отложения фаменского яруса являются однородными по литологическому составу. Фаменский ярус сложен известняками с прослоями доломитов. Толщина 113-348 м.

Каменноугольная система

Нижний отдел

Турнейский ярус

Сложен ярус толщей известняков серых, неравномерно перекристализованных. Толщина 220-260 м.

Визейский ярус

Нижний подъярус

Бобриковский горизонт

Сложен горизонт терригенными породами: песчаниками, алевролитами, аргиллитами. Толщина 50-55 м.

Верхний подъярус

Тульский горизонт

Сложен горизонт известняками темно-серыми до черных, пепельно-серыми. Толщина 100-105 м.

Веневский + михайловский + алексинский горизонты

Нерасчлененная толща веневского, михайловского и алексинского горизонтов представлена известняками и доломитами. В кровле с линзами ангидрита голубовато-серого. Толщина 220-240 м.

Серпуховский ярус

Представлен ярус известняками серыми и светло-серыми. В подошве – пачки аргиллитов темно-серых, плитчатых. Толщина 190-200 м.

Средний отдел

Башкирский ярус

Сложен ярус доломитами от светло- до темно-серых. Толщина 89-131 м.

Московский ярус

Верейский подъярус

Верейский горизонт

Отложения верейского горизонта залегают на размытой поверхности башкирского яруса. Представлен чередованием аргиллитов темно-серых, слюдистых с алевролитами плотными. Толщина 60-65 м.

Каширский подъярус

Каширский горизонт

Представлен горизонт известняками. Толщина 120-130 м.

Подольский подъярус

Подольский горизонт

Сложен горизонт известняками. Толщина 90-100 м.

Мячковский подъярус

Мячковский горизонт

Представлен горизонт переслаиванием доломитов серых, темно-серых и светло-серых. Толщина 130-150 м.

Верхний отдел

Касимовский+гжельский ярусы

Нерасчлененные отложения касимовского и гжельского ярусов представлены доломитами, с гнездами ангидрита и известняками, участками ангидритизированными или глинистыми.

Толшина 150-300 м.

Пермская система

Приуральский отдел

Сложен отдел мощной толщей сульфатно-карбонатных и галогенных образований ассельского, сакмарского, артинского, кунгурского и уфимского ярусов.

Ассельский ярус

Представлен ярус чередованием известняков и доломитов. Толщина 90-100 м.

Сакмарский ярус

Сложен ярус неравномерным чередованием известняков и доломитов. Толшина 70 м.

Артинский ярус

Представлен ярус переслаиванием доломитов и ангидритов. Толщина 110-120 м.

Кунгурский ярус

Филипповский горизонт

Представлен горизонт чередованием ангидритов и доломитов с прослоями известняков. Толщина 100-110 м.

Иреньский горизонт

Сложен горизонт каменной солью, ангидритами и гипсами. Толщина 780-800 м.

Уфимский ярус

Сложен ярус лагунно-морскими пестроцветными породами (переслаивание алевролитов, мергелей и глин). Толщина 77-88 м.

Биармийский отдел

Казанский ярус

Подразделяется на нижний (калиновская свита) и верхний (гидрохимическая и сосновская свиты) подъярусы.

Калиновская свита

Сложена свита глинами с гнездами пирита и кальцита. Толщина 20-30 м.

Гидрохимическая свита

Сложена свита ангидритами и каменной солью. Толщина 105-120 м.

Сосновская свита

Представлена свита карбонатными, песчано-глинистыми и сульфатными породами, переслаивающимися между собой. Толщина 115-125 м.

Татарский отдел

Отложения татарского отдела представлены толщей континентальных песчано-глинистых пород. Отмечается неравномерное чередование красноцветных глин, алевролитов, песчаников с единичными прослоями мергелей, известняков и доломитов. Толщина 320-340 м.

Мезозойская эратема

Выделяется в составе триасовой и юрской систем.

Триасовая система

Отложения триасовой системы несогласно залегают на пермских отложениях и представлены переслаиванием глин, песчаников и песков серовато-буро-коричневых, в подошве с прослоями конгломератов глинистых, мощностью 5-7 м. Толщина 120-150 м.

Юрская система

Представлена система песками и песчаниками серыми, кварцевыми слабосцементированными, глинистыми, до перехода в глины тонкослоистые, вязкие. Толщина 100-130 м.

Кайнозойская эратема

Неогеновая и четвертичная системы

Неогеновые и четвертичные отложения залегают несогласно на размытой поверхности юрской системы. Представлены глинами, песчаниками и песками, которые развиты неповсеместно и выполняют отдельные углубления палеорельефа. Толщина 0 - 25м.

Таким образом, геологический разрез Давыдовского месторождения является сложным, в разрезе отмечается чередование терригенных и карбонатных отложений, невыдержанность пород по литологическому составу и изменчивые толщины, есть перерывы в осадконакоплении, полностью выпадает из разреза меловая и палеогеновая системы, что служит причиной сложного строения резервуаров в осадочном чехле. Вместе, с тем в девонское время были благоприятные условия для формирования

преимущественно пластово-сводовых резервуаров содержащих залежи нефти и газа. Выделяются многочисленные пласты, линзы песчано-алевритовых пород, известняки которые являются коллекторами. Флюидоупорами служат глины, аргиллиты, плотные известняки.

Глава 3 Тектоническое строение

В тектоническом отношении Давыдовское месторождение приурочено к восточной части Зайкинско-Росташинской зоны поднятий южного борта Бузулукской впадины. В целом район характеризуется погружением фундамента и осадочного чехла в южном направлении.

Камелик–Чаганская система дислокаций — зона перехода Волго-Уральской антеклизы в Прикаспийскую впадину - протягивается на расстояние до 40 км при ширине до 6–7 км. По данным геофизических исследований по отложениям архей–среднедевонского возраста ей соответствует сложная система дизъюнктивных блоков; по отложениям от верхнего девона до перми — пликативных куполов, брахиантиклиналей и мульд [9,10].

По данным геофизических исследований и бурения территория приурочена к Камелик-Чаганской зоне разломов, характеризующейся блоковым строением. Блоки разделяются дизъюнктивными нарушениями субширотного и субмеридианального направления и ступенеобразно погружаются к югу в сторону Прикаспийской синеклизы. Эти нарушения прослеживаются в девонских отложениях, включая тиманский горизонт, а выше по разрезу, в результате размыва выступающих участков и заполнения отложениями впадин, происходит выравнивание поверхности палеорельефа [9].

В пределах Камелик-Чаганской ступени тектоническим блокам по фундаменту в осадочном чехле соответствуют структурные зоны, террасы, осложненные локальными поднятиями.

Для Бузулукской впадины характерна интенсивная расчлененность фундамента и терригенно-карбонатной толщи среднего девона на множество протяженных структурно-блоковых ступеней, осложненных более мелкими блоками [10].

Переинтерпретация временных сейсмических разрезов в пределах изучаемой территории позволила предположить наличие серии глубинных разломов, обрамляющих бортовую зону Бузулукской впадины и расчленяющих отложения девона на линейно вытянутые блоки, разделенные поперечными разломами на более мелкие.

Анализ толщин отложений и полноты стратиграфических разрезов позволил установить, что мелкие приподнятые и опущенные блоки, формирующие более крупные линейно вытянутые зоны, имеют идентичные условия развития. Соседние крупные блоки, разделенные глубинными разломами, могут значительно отличаться друг от друга по полноте геологического разреза и амплитудам движения.

В целом разрез осадочного чехла южной части Бузулукской впадины представлен двумя крупными структурно-формационными комплексами. Нижний (доплитный) включает отложения предположительно верхнего протерозоя (рифей, венд), представлен терригенными и карбонатными образованиями и, предположительно, нивелирует рельеф фундамента. Залегающий выше плитный комплекс делится на две части: нижнюю - включающую подсолевые палеозойские отложения, и верхнюю - сложенную соленосными образованиями кунгурского яруса перми и надсолевыми верхнепермско-кайнозойскими породами.

Большинство ступеней-блоков в южной своей части характеризуются воздыманием и наличием антиклинальных складок, ограниченных с юга региональными сбросами.

Седиментация среднедевонских отложений на рассматриваемой территории происходила в условиях длительного погружения, обусловившего интенсивное накопление карбонатов (эйфельское время) и терригенных пород (живетское и франское время) с которыми связаны основные залежи нефти.

В начале среднефранского времени исследуемая территория испытала региональный подъем, интенсивность которого возрастала от Конновской площади в восточном направлении и достигла своего максимума на Давыдовской площади, где в 14КВ.№ 1 амплитуда размыва достигла более ста метров (размыты муллинские отложения). Эта структурная перестройка, обусловившая формирование рельефа фундамента и среднедевонского структурного этажа, завершилась в предфаменское время. Образовавшийся структурный план нижнегерцинского структурного этажа в последствии был мощной толщей преимущественно карбонатных перекрыт пород среднефранско-нижнепермского возраста, выделяемой единый структурный этаж, соответствующий среднегерцинскому циклу тектогенеза [10].

Верхний структурный этаж характеризуется меньшей дислоцированностью. В отложениях карбона и перми среднедевонским блокам соответствуют террасы, а разломам, ограничивающим эти блоки с юга, флексурные перегибы [1,9,11].

Большинство разломов возникло в франское время, но некоторые из них проявлялись и позже, достигая отложений башкирского яруса.

Два тектонических нарушения (сброса) субширотного простирания, трассируемые по данным сейсморазведки, расчленяют поверхность кристаллического фундамента в пределах исследуемой территории на три разноуровенные ступени – северную (Давыдовскую), центральную (Средне-Давыдовскую) и южную (Нижне-Давыдовскую) [1,9].

Давыдовская структура приурочена к северной ступени и выявлена только по девонским отложениям. Ступень имеет наклон в южном направлении, ориентировочная величина наклона составляет 40 м.

По поверхности кристаллического фундамента и маркирующим поверхностям среднего девона Давыдовское поднятие имеет сложное блоковое строение. С юга поднятие ограничивается субширотным разломом амплитудой более 200м. Субмеридиональный разлом амплитудой порядка 20м делит структуру на две части: восточная часть приподнята, западная опущена. Отмеченные выше особенности строения Давыдовского поднятия сохраняются по всем маркирующим горизонтам среднего девона.

Из сказанного выше можно сделать вывод, что в среднедевонских комплексах в пределах рассматриваемой территории выделяются сложные по строению структурные ловушки, благоприятные для формирования нефтяных залежей.

Глава 5 Нефтегазаносность

Бузулукская нефтегазоносная область Волго-Уральской нефтегазоносной провинции, куда входит Давыдовское месторождение, характеризуется широким распространением нефтегазоносности как по площади, так и по стратиграфическому разрезу.

В Оренбургской части этой области открыт целый ряд крупных месторождений (Вишневское, Гаршинское, Зайкинское и др.). Месторождения, как правило, многопластовые, содержат нефтяные или газоконденсатные залежи [13].

На Давыдовском месторождении промышленные залежи нефти установлены только в отложениях ардатовского, воробьевского и мосоловского горизонтов среднего девона – пласты Д₃, Д₄ и Д₅.

Общей особенностью структурно-тектонического строения продуктивных пластов является разделение разрывным нарушением северо-

восточного простирания со сдвиговой кинематикой на два гидродинамически изолированных блока: западный и восточный.

Залежи нефти пласта Д₅ мосоловского горизонта

Пласт Д₅ является основным объектом Давыдовского месторождения.

Коллекторы пласта представлены известняками с незначительными прослоями доломитов. Покрышкой служат аргиллиты черноярского горизонта. В пределах месторождения пласт $Д_5$ подразделяется на два: пласт J_5^{1+2} и пласт J_5^{3} .

Залежь нефти пласта $Д_5^{1+2}$ разделена на две части: западную и восточную. В пределах западного блока вскрыта скважинами 11 и 14. Залежь пластово-сводовая, тектонически экранированная с запада, востока и юга. Размер залежи 4х3 км при высоте 80 м. В восточном блоке залежь нефти пласта $Д_5^{1+2}$ пластово-сводового типа, тектонически экранированная с юга разломом и литологически ограниченная с запада (район скважин 4, 8 и 2712). Ее размеры составляют 5х3,5 км при высоте 125 м. Залежь вскрыли скважины 1, 2, 6, 2707, 2709 и 2713.

Залежи пласта Д₄ воробьевского горизонта

Коллекторы пласта Д₄ представлены переслаиванием терригенных пород — песчаников, алевролитов, аргиллитов, редко карбонатных (известняки), последние встречены в скважинах 1, 4, 14.

Эффективная нефтенасыщенная толщина по нефтяной части залежи изменяется от 1 м (скв. 2717) до 11,2 м (скв. 2713), среднее значение составляет 3,72 м; средняя эффективная нефтенасыщенная толщина в водонефтяной части залежи -1,7 м.

Пласт опробован в скважине 4 в интервале 4409,5-4413 м (а.о.-4277,5 - 4281 м). На 8 мм штуцере получен приток нефти $84,5 \text{м}^3/\text{сут}$ с газом $48,5 \text{тыс.m}^3/\text{сут}$ и с пластовой водой. ВНК принят условно на а.о. -4298 м по подошве нижнего нефтенасыщенного пропластка в скважине 2.

Залежь пласта $Д_3^2$ ардатовского горизонта

Пласт представлен переслаиванием песчаников, алевролитов, реже аргиллитов и известняков. Коллекторы представлены песчаниками серыми, светло-серыми в скважинах 2, 4, 6, 14, с прослоями коричневатого оттенка от слабого нефтенасыщения, кварцевого состава, мелкозернистые, в различной степени алевритистые, плотные. Покрышкой служит пачка 5-13 м толщины известковистых аргиллитов темно-серых, в различной степени алевритистых.

В пределах месторождения залежь нефти выявлена только в пласте ${\rm Д_3}^2$ в восточном блоке.

Залежь пластово-сводовая, тектонически экранированная с запада и юга, в северо-восточной части — литологически экранированная. Залежь имеет размеры 9.3×2.9 км, высота — 70 м.

Залежь вскрыта 10-тью скважинами, в том числе и новой скважиной 2712. Испытания пласта проведены в скважине 1 в интервале 4273,6-4289,6 м (а.о. -4192,3 -4208,3 м). В результате на штуцере 12 мм получено 204 м 3 /сут безводной нефти и 36 тыс. м 3 /сут газа. ВНК для этой залежи принят на абсолютной отметке -4258 м по подошве нефтенасыщенного коллектора в скважине 6 (а.о.-4258,1 м).

Средняя эффективная нефтенасыщенная толщина в нефтяной части залежи составляет 6,8 м, в водонефтяной зоне пласта средняя эффективная нефтенасыщенная толщина — 5,4 м. Залежи нефти в западном блоке не выявлены.

Таким образом, объектами доразведки в восточном блоке месторождения являются залежи пластов $Д_3$, $Д_4$ и $Д_5$ среднего девона, значительная часть запасов которых оценена по категории C_2 (80%).

Глава 5Обоснование доразведки Давыдовского месторождения

Анализ геологического строения и нефтегазоносности рассматриваемого месторождения позволяет сделать следующие выводы:

- 1. Давыдовское месторождение характеризуется сложным геологическим строением с наличием разрывных нарушений и перерывами в осадконакоплении.
- 2. Залежи нефти приурочены к комбинированным тектонически и литологически ограниченным ловушкам.
 - 3. Коллекторы крайне не выдержаны по площади.
 - 4. Водо-нефтяные контакты в большинстве случаев приняты условно.
- 5. Хотя месторождение уже введено в промышленное освоение по соотношению извлекаемых запасов категорий C_1 и C_2 месторождение относится к недоизученным. Основные запасы отнесены к категории C_2 и составляют более 80%.

Все вышеизложенное указывает на то, что месторождение является недоизученным. Степень изученности основных объектов разработки мосоловского (пласт ${\cal I}_5^3$) и ардатовского (пласт ${\cal I}_3^2$) горизонтов недостаточна. Недоразведанными остается восточный блок месторождения.

Заключение

Анализ собранного геолого-геофизического материала, характеризующего строение и нефтеносность Давыдовского месторождения, показал, что залежи среднедевонского комплекса сложно-построены, бурением изучены недостаточно, основные запасы оценены по категории C_2 .

Ввиду сложности геологического строения месторождения, выразившейся в литологической неоднородности продуктивных пластов, наличии разрывных нарушений, невыдержанности нефтенасыщенных толщин и коллекторских свойств пластов, необходимо провести мероприятия по доразведки отдельных участков месторождения. Для осуществления доразведки Давыдовского месторождения рекомендуется заложение двух независимых разведочных скважин 100, 101 с проектной глубиной 4600м и проектным горизонтом бийским.

Бурение этих скважин позволит уточнить строение залежей Давыдовского месторождения и в случае получения положительных результатов прирастить запасы промышленных категорий, а следовательно более обоснованно проводить разработку месторождения.