Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра электроники, колебаний и волн

Дисперсионные характеристики медленных электромагнитных волн в структуре феррит-полупроводниковая решетка

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента 4 курса 421 группы направления 03.03.03 Радиофизика факультет нелинейных процессов Костюка Александра Витальевича

Научный руководитель доцент, к.ф.-м.н.

подпись, дата

А.В. Садовников

Зав. кафедрой электроники, колебаний и волн, член-корр.РАН, д.ф.-м.н, профессор

подпись, дата

Д.И. Трубецков

Саратов 2017г.

Введение.

В настоящее время интенсивно исследуются массивы латерально-связанных волноводов как в оптическом, так и в микроволновом диапазонах электромагнитных волн. На их основе реализуются управляемые пространственные линейные и нелинейные волноводные переключатели в системах пространственной обработки информационных сигналов.

Волноведущие структуры, изготовленные на основе слоев феррита, обладают различными электродинамическими характеристиками из-за того, что данными характеристиками можно управлять с помощью изменения величины внешнего магнитного поля (приводит к изменению рабочей полосы частот устройства), так и с помощью изменения его направления [1]. Происходит это из-за того, что существуют различные типы волн, распространяющихся в ферритах (прямые и обратные объемные, поверхностные), обладающие разными дисперсионными характеристиками.

Развитие технологий выращивания высококачественных тонких ферритовых пленок на полупроводниковых подложках вызвало новый интерес к исследованию волновых процессов в феррит-полупроводниковых структурах с целью получения управляемых устройств обработки сигналов. В данной работе проведен расчет электродинамических характеристик структур содержащих тонкие ферритовые слои с полупроводниковыми решетками..

Основное содержание работы.

В главе первой было рассмотрено численное моделирование волновых процессов в структуре.

В данной работе численное моделирование методом конечных элементов (МКЭ) проводилось с помощью программного пакета Comsol multiphysics. С помощью данного программного пакета решалось волновое уравнение, полученное непосредственно из уравнений Максвелла:

$$\nabla \mu^{-1} (\nabla E) - k_0^2 (\varepsilon - \frac{j\sigma}{\omega \varepsilon_0}) E = 0$$

$$\lambda = -\vec{j}\beta - \delta_z$$

$$E(x, y, z) = \tilde{E}(x, y) e^{-ik_z z}$$
(1)

 $k_0 = \omega / c$, где \vec{E} и \vec{H} – значения электрического и магнитного полей, σ поверхностная проводимость вещества, β - продольная постоянная волнового распространения, ε – Тензор диэлектрической проницаемости вещества, μ - тензор ферримагнетических свойств плёнки ЖИГ, ω - частота, k_0 - волновые числа.

Граничные условия области задавались в виде металлических стенок (РЕС) сверху и снизу и магнитных стенок (РВС) слева и справа (периодические граничные условия (РВС) для компонент электрических полей боковых стенок):

$$E_{dst} = E_{src} e^{-\vec{j}k_F \cdot (r_{dst} - r_{src})}$$

$$H_{dst} = H_{src} e^{-\vec{j}k_F \cdot (r_{dst} - r_{src})}$$
(2)

Такой выбор граничных условий в рамках поставленных задач обусловлен тем, что при экспериментальных исследованиях мультиферроидных структур управляющее электрическое поле приложено к сегнетоэлектрическому слою вдоль его толщины (вдоль оси у), для чего требуются металлические экраны. В работе [2] доказывалось, что отдаление границ расчетной области от ЖИГа на достаточное расстояние позволяет проводить расчет открытого планарного ферритового волновода на подложке, в данном случае расстояния до границ выполнены согласно этим условиям.

В главе второй был получен вид тензора диэлектрической проницаемости полупроводника и тензора магнитной проницаемости феррита для решения волнового уравнения (1).

Для решения волнового уравнения нужно получить тензор магнитной проницаемости плёнки ЖИГ и тензор диэлектрической проницаемости полупроводника.

Решая уравнение Ландау-Лифшица для прецессии магнитного поля и намагниченности в условии их малых вариаций, можно получить тензор магнитной проницаемости, описывающий анизотропию ферритовой среды [2,3]. В случае касательного намагничивания ферритовой пленки вид тензора, описывающего ее свойства, следующий [3]:

$$\mu = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \mu(f) & -j\mu_a(f) \\ 0 & -j\mu_a(f) & \mu(f) \end{vmatrix}$$

где : $f_M = \gamma 4\pi M_0$ GHz, $f_H = \gamma H_0$ GHz, $\gamma = 2.8$ MHz/Oe – гиромагнитное отношение в ЖИГ;

Для среды полупроводника был выведен тензор диэлектрической проницаемости:

Исходным уравнением было взято уравнение для движения зарядов[4]: $\frac{\partial}{\partial t}\vec{V} + (\vec{V}\nabla)\vec{V} = \frac{q}{m}\cdot(\vec{E}+\vec{V}\times\vec{B}) + \nu\cdot\vec{V}$

где V - скорость дрейфа электронов, q - заряд электрона, m - масса электрона, E - напряженность электрического поля, B - вектор магнитной индукции. Тензор диэлектрической проницаемости полупроводника с учетом дрейфа носителей заряда

$$\varepsilon = \begin{vmatrix} \varepsilon_{g} - \frac{jw_{p}^{2}(V_{0}k - \omega)}{\omega^{2}(jV_{0}k - j\omega - v)} & 0 & 0 \\ 0 & \varepsilon_{g} + \frac{jw_{p}^{2}(V_{0}k - \omega)(jV_{0}k - j\omega - v)}{\omega^{2}(\omega^{2} + 2(-jv - V_{0}k)\omega + 2jV_{0}vk + V_{0}^{2}k^{2} - v^{2} - w_{c}^{2})} & \frac{-jw_{p}^{2}w_{c}}{\omega(\omega^{2} + 2(-jv - V_{0}k)\omega + 2jV_{0}vk + V_{0}^{2}k^{2} - v^{2} - w_{c}^{2})} \\ 0 & \frac{-jw_{p}^{2}w_{c}(V_{0}k - \omega)}{\omega^{2}(\omega^{2} + 2(-jv - V_{0}k)\omega + 2jV_{0}vk + V_{0}^{2}k^{2} - v^{2} - w_{c}^{2})} & \varepsilon_{g} - \frac{jw_{p}^{2}(jV_{0}k - j\omega - v)}{\omega(\omega^{2} + 2(-jv - V_{0}k)\omega + 2jV_{0}vk + V_{0}^{2}k^{2} - v^{2} - w_{c}^{2})} \\ \end{vmatrix}$$

В данной модели скорость дрейфа носителей не учитывалась, для чего и был получен тензор диэлектрической проницаемости полупроводника без учета дрейфа носителей заряда:

$$\varepsilon = \begin{vmatrix} \varepsilon_{g} + \frac{jw_{p}^{2}}{\omega(-j\omega - v)} & 0 & 0 \\ 0 & \varepsilon_{g} - \frac{jw_{p}^{2}(-j\omega - v)}{\omega(\omega^{2} + 2(-jv)\omega - v^{2} - w_{c}^{2})} & \frac{-jw_{p}^{2}w_{c}}{\omega(\omega^{2} + 2(-jv)\omega - v^{2} - w_{c}^{2})} \\ 0 & \frac{jw_{p}^{2}w_{c}}{\omega(\omega^{2} + 2(-jv)\omega - v^{2} - w_{c}^{2})} & \varepsilon_{g} - \frac{jw_{p}^{2}(-j\omega - v)}{\omega(\omega^{2} + 2(-jv)\omega - v^{2} - w_{c}^{2})} \end{vmatrix}$$

4

L

Подставляя тензор (2) в волновое уравнение (1) с учетом соотношений (3), получаем возможность численного моделирования поверхностных спиновых волн в ферритах без учета обменного взаимодействия. Ограничением в данном случае выступает длина волны, много большая периода между атомами кристаллической решетки (k=2 π/λ <104 см-1).

Рис.1 а) Схема исследуемой структуры с указанием выбранной ориентации осей, направление поля подмагничивания (Н) и направлением распространения ЭМВ (волновой вектор k).
Синие полоски – полоски полупроводника.
б) Схема расчетной области для численного эксперимента с указанием размеров. РВС – периодические граничные условия,

РЕС – граничные условия типа металлические стенки.

Структура представляла собой набор полосок из GaAs на поверхности слоя ЖИГ. В данной структуре для волны, распространяющейся вдоль полосок полупроводника, структура представляет собой систему из бесконечного числа связанных волноводов. Схема структуры в изометрии представлена на рисунке а, схема расчетной области с указанием размеров приведена на рисунке б, где PBC – периодические граничные условия, PEC – граничные условия в виде металлических стенок, отодвинутые на расстояние, при котором их влияние на результаты расчета минимально и структура может считаться планарной. При численном эксперименте намагниченность феррита составляла M0=108 G, напряженность внешнего магнитного поля H0= 1308 Oe, время жизни электронов 20 нс, их эффективная масса 6.1033*10-32 кг. Диэлектрическая проницаемость пленки ЖИГ полагалась равной $\varepsilon_y = 12.7$. В главе третей были получены дисперсионные характеристики замедленных электромагнитных волн и спектр дисперсионных характеристик поверхностных волн, распространяющихся под различными углами относительно решетки.

Рисунок 2. а) Зависимость волнового числа от концентрации носителей в структуре, приведенной на рис. 1 при частоте 5.55 ГГц. б) Дисперсионные кривые распространяющихся в структуре ЭМВ при n = 5 10^{15} , 5 10^{16} , 1 10^{17} , 2.5 10^{17} , 5 10^{18} $1/m^3$ (соответственно при увеличении групповой скорости ЭМВ). Красными кривыми обозначена дисперсия ПМСВ в безграничном ферритовом слое (с меньшей групповой скоростью) и дисперсия ПМСВ при замене полосок полупроводника идеально проводящими металлическими (кривая с большей групповой скоростью). Пунктирными кривыми отмечены частоты существования ПМСВ.

На частоте вблизи верхней граничной частоте ПМСВ были проведены расчеты волнового числа в зависимости от концентрации электронов в слое полупроводника, результаты представлены на рисунке 2а. Данный график показывает, в какой области изменение концентрации носителей полупроводника наиболее сильно влияет на дисперсионную характеристику ЭМВ, области с незначительным изменением волнового числа при значительном изменении концентрации соответствуют влиянию полупроводника на распространяющуюся в структуре волну как влияние диэлектрика (малая концентрация носителей) и как влияние металла (область, соответствующая высокой концентрации носителей). Согласно справочникам, концентрация *n* в GaAs от $5 \cdot 10^{15}$ см⁻³ для нелегированных образцов и до 10²² см⁻³ для легированных материалов. При этом диапазон изменения концентрации в промышленно изготавливаемых образцах составляет до 10³. Таким образом, получая зависимость изменения волнового числа распространяемой ЭМВ в структуре с требуемыми параметрами от концентрации при необходимой частоте, можно определить необходимый полупроводниковый материал для требуемой перестройки характеристик ЭМВ.

В соответствии с результатами влияния концентрации на волновые числа были выбраны несколько значений *n*, при которых проводился расчет дисперсионных характеристик ЭМВ, распространяющихся в данной структуре в направлении, параллельном полоскам полупроводника. Результаты расчета дисперсионных характеристик представлены на рисунке 2б и 3. Из результатов видно, что при низких значениях концентрации дисперсионные характеристики оказывались близки к дисперсии волны Дэймона-Эшбаха, при высоких – к частично металлизированному ферритовому волноводу (когда в изучаемой структуре полоски ПП заменялись идеально проводящим металлическим экраном). Соотнесение результатов с данными предельными случаями подтверждают корректность расчетов.

концентрации носителей зарядов без учёта потерь: без плёнки полупроводника (а),синие - пленки полупроводника с концентрацией носителей заряда $n = 5 \cdot 10^{16} (1/cm^3)$ (b), оранжевые - $n \approx 5 \cdot 10^{18} (1/cm^3)$ (c). По сравнению с однородными структурами периодические в одном или нескольких направлениях волноведущие структуры позволяют изменять характеристики распространяющихся волн, ввиду образования в определенных частотных диапазонах запрещенных зон (полос непропускания), что происходит из-за интерференции волн внутри структуры. За счет периодических дефектов в таких структурах всегда существует две волны одного типа, распространяющихся в разных направлениях оси z. Диапазон частот полосы непропускания определяется значением пространственного периода структуры λ , определяющего значение волнового числа Брэгговского резонанса: $k_{br} = \pi / \lambda$

Идея управления шириной запрещенной зоны в такой структуре заключается в следующем. Известно, что в периодической структуре с модуляцией ширины или толщины волновое число парциальной волны ферритового слоя при выбранной частоте находится между значений k1 и k2. Эти значения определяются соответственно толщинами пленки как дисперсионными характеристиками ферритовых слоев с соответствующими толщинами. При этом запрещенная зона возникает вследствие разницы этих значений, что на дисперсионной характеристике выглядит как резкий «перескок» между дисперсионными кривыми, соответствующими толщинам при значении kbr.

Рисунок 3.

а) Схема исследуемой структуры с указанием выбранной ориентации осей, направление поля подмагничивания (Н) и направлением распространения ЭМВ (волновой вектор k). Синие полоски – полоски полупроводника.
б) Схема произвольного направления распространения ЭМВ в исследуемой структуре, приведенной на рисунке 1 (вид сверху) с указанием выбранных осей и магнитного поля. Для трех частот были построены изочастотные кривые при различных концентрациях носителей полупроводникового слоя. Выбраны три значения концентрации носителей, при которых поведение дисперсионные кривых ЭМВ было близко к предельным случаям и вдали от них. При концентрации носителей ($n = 5 \ 10^{16} \ 1/cm^3$) волноведущая структура для распространяющейся ЭМВ становится периодической, в которой положение Брэгговской запрещенной зоны определяется значением периода структуры, а ширина (по волновым числам) – величиной концентрации носителей и наклоном дисперсионной характеристики волны в данной точке. При наличии запрещенной зоны, изочастотная характеристика устанавливает связь диапазона допустимых (недопустимых) углов и длин волн, при которых ЭМВ могут распространяться в данной структуре.

Рисунок.4. Изочастотные кривые, полученные при численном эксперименте для волн, распространяющихся в структуре, приведенной на рис. 1, при указанных значениях частоты и для разных концентраций носителей заряда. Красные кривые соответствуют концентрации частиц в структуре без плёнки полупроводника, синие пленке полупроводника с концентрацией носителей заряда $n = 5 \cdot 10^{16} (1/cm^3)$, оранжевые $-n \approx 5 \cdot 10^{18} (1/cm^3)$.

Заключение.

В результате проведённых исследований показано, что дисперсионная характеристика волн определяется концентрацией носителей заряда в полупроводнике. При малых концентрациях она совпадает с волной Деймона - Эшбаха, при больших концентрациях, близких к металлу, она совпадает с дисперсией металлизированной с одной стороны ферритовой плёнки. Был получен спектр дисперсионных характеристик поверхностных волн, распространяющихся под различными углами относительно решетки в структуре феррит – полупроводник. Для этого были сняты 3 изочастотные кривые, для 3 различных концентраций носителей в полупроводнике: для случая без плёнки полупроводника, с плёнкой полупроводника с концентрацией носителей заряда $n = 5 \cdot 10^{16} (1/cm^3)$ и с плёнкой полупроводника с концентрацией носителей заряда $n \approx 5 \cdot 10^{18} (1/cm^3)$, в модели последний случай задавался с помощью придания плёнке полупроводника, свойств плёнки из меди. Все результаты были получены при численном эксперименте для волн, распространяющихся в структуре с помощью программного пакета comsol multiphysics.

Список использованных источников:

- 1. Вашковский А. В., Стальмахов В. С., Шараевский Ю. П. Магнитостатические волны в электронике сверхвысоких частот. Саратов : Изд-во. Сарат. ун-та, 311 с. 1994.
- Sadovnikov A.V., Bublikov K.V. Electrodynamical properties and modes of finite-width planar ferrite waveguide // Journal of Physics: Conference Series 2014. Vol. 572, №1
- 3. Садовников А.В., Рожнёв А.Г. Моделирование распространения магнитостатических волн в одномерных магнонных кристаллах. // Изв. вузов. Прикладная нелинейная динамика. 2012. Т. 20. № 1. С. 143.
- Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.Физматлит 1994 г.
- В.А. Беспалов, А.В. Воронцов, А.А. Горбацевич, В.И. Егоркин, Г.П. Жигальский, Э.А. Ильичев, А.В. Кулаков, Б.Г. Налбандов, В.С. Пантуев, В.Н. Распутный, Ю.Н. Свешников, С.С. Шмелев Электрофизические свойства GaAs слоев и особенности характеристик детекторов частиц высоких энергий на их основе ЖТФ 2004, том 74, вып. 3
- 6. А.С. Киндяк Нелинейные поверхностные магнитостатические волны в феррит-полупроводниковой структуре. ЖТФ, том 69, вып. 6, 1999 г.
- А.С. Киндяк Усиление поверхностной магнитостатической волны в фотовозбужденной структуре феррит – полупроводник. Письма в ЖТФ, том 21, вып. 19, 1995 г.
- И.Г. Кудряшкин, Ю.К.Фетисов Взаимодействие поверхностных магнитостатических волн с электронами проводимости в тонкопленочной структуре феррит – полупроводник. Письма в ЖТФ, том 15, вып. 8, 1989 г.
- 9. И.В. Зависляк, А.В. Тычинский Физические основы функциональной микроэлектроники. Киев. 1989 г.