Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра физики открытых систем

Аттракторы слабодиссипативного стандартного отображения с малыми бассейнами притяжения

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 431 группы

направления 03.03.03 «Радиофизика»

факультета нелинейных процессов

Голоколенова Александра Владимировича

Научный руководитель к.ф.-м.н., доцент КФОС

подпись, дата

Зав. кафедрой д.ф.-м.н., профессор

А.А. Короновский

Д.В. Савин

подпись, дата

Саратов 2017 г.

Оглавление

Введение
Глава 1. Дискретные отображения 5
1.1 Отображение Эно 5
1.2 Стандартное отображение на примере «гравитационной машины»
Заславского
Глава 2. Аттракторы стандартного отображения при слабой диссипации 11
2.1 Фазовые портреты слабодиссипативного стандартного отображения 11
2.2 Временные реализации 13
2.3 Построение бифуркационных диаграмм для переменной ф по
параметру К при фиксированных значениях параметра диссипации 13
2.4 Построение бифуркационных диаграмм для переменной ф по
параметру Е при фиксированных значениях параметра К 14
Заключение16

Введение

Одним из направлений в радиофизике является изучение поведения различных колебательных систем, в частности, нелинейных. Зачастую динамика таких систем оказывается достаточно сложной для аналитического исследования, в таких случаях применяются численные методы. Для этого исследуемой системы, которой создается модель В вводится ряд предположений для ее упрощения, но которые не влияют на поведение системы. В этом случае удобным инструментов для исследования выступают дискретные отображения [1]. Дискретные отображения являются важнейшим классом простейших математических моделей, обслуживающих потребности нелинейной физики, и, в частности, нелинейной динамики.

Динамическая система – система для которой однозначно определено ее состояние и однозначно задан закон эволюции этого состояния во времени [2]. Динамические системы бывают диссипативными и консервативными. Консервативные системы характеризуются сохранением, а диссипативные – уменьшением фазового объема с течением времени. Следовательно, в консервативных системах каждому начальному условию соответствует своя уникальная траектория, а в диссипативных существуют аттракторы – притягивающие множества в пространстве переменных системы (*фазовом пространстве* [2]).

Если система при вариации одного из параметров способна переходить из одного класса в другой, при переходе от консервативного случая к диссипативному будет реализовываться и случай со слабой диссипацией, для которого характерно наличие множества одновременно сосуществующих аттракторов [3, 4]. Количество таких аттракторов увеличивается при приближении к консервативному случаю, что приводит к уменьшению размеров их бассейнов притяжения – областей, из которых итерации отображения сходятся к аттрактору – и общему усложнению структуры

3

фазового пространства. В целом известно, что подавляющее большинство таких аттракторов является периодическими [4]. Однако, динамика отдельных аттракторов может представлять интерес для более детального изучения.

Так, в данной работе будет проведено детальное исследование аттракторов двумерного дискретного стандартного отображения — *«гравитационной машины» Заславского* [5, 6] – в случае слабой диссипации. Для этого будет использоваться спектр численных методов визуализации динамики нелинейных дискретных отображений: построение фазовых портретов при различных значениях параметра диссипации, *бифуркационных диаграмм* [1], временных реализаций.

Глава 1. Дискретные отображения.

1.1 Отображение Эно.

Отображение Эно было предложено французским астрофизиком в 1976 г. как абстрактный пример простой динамической системы, обладающей *странным аттрактором* [7]. Данное отображение описывается системой уравнений:

$$\begin{cases} x_{n+1} = 1 - \lambda * x_n^2 - by \\ y_{n+1} = x_n \end{cases}$$
(1)

где λ – параметр нелинейности, **b** – параметр диссипации, а **x** и **y** – динамические переменные.

Данное отображение может описывать ряд различных колебательных систем, в частности, линейный осциллятор под импульсным воздействием специального вида [8].

Определим, какое значение параметра b соответствует консервативному случаю, для этого вычислим якобиан (определитель матрицы Якоби) отображения.

$$J = \begin{pmatrix} -2\lambda x_n & -b\\ 1 & 0 \end{pmatrix} = \mathbf{b}$$
(2)

Как видно из уравнения (2), консервативный случай будет наблюдаться при значении параметра диссипации **b**=1.

Так как динамика выбранной системы сложна для аналитического исследования, то мы исследовали ее численно. Для этого была написана программа, с помощью которой были построены фазовые портреты данного отображения. Для визуализации динамики отображения задается множество начальных условий в виде двумерного массива точек в интервале координат, указанных для каждого отображения, с шагом Р между соседними точками, который может меняться для разных случаев, далее координаты этих точек подставляются в исследуемую систему уравнений и итерируются несколько тысяч раз. Для большего удобства исследования получившихся фазовых портретов, чтобы в случаях с диссипацией исключить из рассмотрения переходный процесс и получить изображение аттрактора в установившемся режиме, на плоскости отображаются только последние несколько итераций (в консервативном случае это позволяет избежать «замазывания» хаотической области траекториями изображающих точек).

Рассмотрим несколько случаев для различных значений параметра b, а также, для различных значений параметра нелинейности λ.

Рис.1-Фазовые портреты отображения отображение Эно a) b=1, λ=0.3, P=0.05, б) b=0.99, λ=0.3, P=0.05, в) b=0.5, λ=0.3, P=0.05

На рис. 1 а показан консервативный случай (b=1), по которому видно, что каждому начальному условию соответствует своя траектория, замкнутая вокруг неподвижной точки эллиптического типа (типа «центр»). На рис. 1 б показан случай со слабой диссипацией (b=0.99), при котором видны траектории в виде скручивающейся спирали, сходящейся к неподвижной точке, на рисунке показаны 990 последних итераций из 1000. На рис. 1 в показан случай с сильной диссипацией (b=0.5), в этом случае видена одна неподвижная точка, на рисунке показаны 9 последних итераций из 20.

Рис.2-Фазовые портреты отображения отображение Эно a) b=1, λ=3.2, P=0.05, б) b=0.99, λ=3.2, P=0.04, в) b=0.5, λ=3.2, P=0.005

На рис. 2 а снова показан фазовый портрет для консервативного случая, но для другого значения параметра λ , на котором можно видеть уже две неподвижных точки с областью хаотической динамики между ними. На рис. 2 б показан фазовый портрет для случая со слабой диссипацией (b=0.99), на котором виден аттрактор в виде двух неподвижных точек. На этом рисунке показаны 990 последних итераций из 1000, для того чтобы можно было проследить эволюцию облака. На рис. 2 в показан фазовый портрет для случая с сильной диссипацией (b=0.5), демонстрирующий странный аттрактор. На фазовом портрете показаны последние 10 итераций из 30. Из полученных изображений фазовый объем можно сделать вывод, что начальный существенно быстрее близким, уменьшается ПО сравнению С к консервативному, случаем (см. рис. 1 б, 1 в и рис. 2 б, 1 в).

1.2 Стандартное отображение на примере «гравитационной машины» Заславского.

Изначально идея гравитационной машины была предложена для объяснения стохастического ускорения частиц в космосе, было предложено несколько простейших моделей которые могли бы описывать подобное явление [2]. Одной из них как раз и является «гравитационная машина» Заславского.

Данная модель описывается системой уравнений, приведенной ниже, для удобства уравнения записаны в безразмерном виде.

$$\begin{cases} V_{n+1} = (1-\varepsilon)V_n + K(2-\varepsilon)sin2\pi\phi_n \\ \phi_{n+1} = \phi_n + V_{n+1} \end{cases}$$
(3)

Система представляет собой шарик, подпрыгивающий на массивной, вертикально осциллирующей плите и падающий обратно под действием силы тяжести. Идея данной модели заключается в том, чтобы выяснить, сможет ли шарик с большим количеством соударений подпрыгивать выше. Оказалось, что условием стохастического ускорения является малая амплитуда и высокая скорость колебаний плиты [2]. В нашей системе мы как раз пренебрегаем амплитудой и рассматриваем только скорость и фазу колебаний. Путем перенормировки это отображение может быть сведено к другой широко распространённой модели – стандартному отображению Чирикова-Тейлора, которое может описывать широкий класс систем различной природы; с точки зрения теории колебаний стоит выделить среди них ротатор под импульсным воздействием [9].

Как и в случае с отображением Эно, для стандартного отображения была написана программа, с помощью которой были построены фазовые портреты данного отображения. Для визуализации динамики отображения, также, как и в предыдущем случае, задается множество начальных условий в виде двумерного массива точек в интервале от 0 до 1 по оси ординат и от 0 до 2π по оси абсцисс, с шагом между соседними точками Р, который также может меняться, далее координаты этих точек подставляются в исследуемую систему уравнений и итерируются несколько сотен тысяч раз. Для большего удобства исследования получившихся фазовых портретов, отображаться на плоскости будут также только последние несколько итераций, в данном случае последние 200 итераций. На фазовой плоскости по оси абсцисс откладывается безразмерная скорость шарика, а по оси ординат – безразмерная фаза, на которую придется п-ый удар шарика.

Определим, какое значении параметра є соответствует консервативному случаю, для этого вычислим якобиан отображения.

$$J = \begin{pmatrix} 1 - \varepsilon & 2\pi K(2 - \varepsilon) \cos 2\pi \phi_n \\ 0 & 1 \end{pmatrix} = 1 - \varepsilon$$
(4)

Из уравнения (4) следует, что система будет консервативной при значении параметра диссипации E=0.

На рис. 3 а показан фазовый портрет для консервативного случая, на котором видны островки периодичности, а также область хаотической

динамики между ними. На рис. 3 б показан фазовый портрет для случая со слабой диссипацией, для которого характерно большое количество одновременно сосуществующих аттракторов. На рис. 3 в показан фазовый портрет для случая с сильной диссипацией, на котором виден один аттрактор (неподвижная точка), к которому сходится траектория в виде скручивающейся спирали.

Рис.3-Фазовые портреты стандартного отображения а) K=0.1, E=0, P=0.02 б) K=0.1, E=0.01, P=0.01 в) K=0.1, E=0.5, P=0.01

Глава 2. Аттракторы стандартного отображения при слабой диссипации

2.1 Фазовые портреты стандартного отображения со слабой диссипацией.

Для начала исследования нашей системы постоим фазовые портреты для параметра диссипации Е=0.001 и Е=0.007 при фиксированном значении управляющего параметра K=0,1.

На рис. 4 а,б видно, что там, где в консервативном случае (см. рис. 3 б) наблюдались крупные островки периодичности, в случае со слабой диссипацией находятся периодические точки, а на месте островков можно увидеть объекты, которые выглядят, как скопление точек на фазовой плоскости, эти объекты как раз и представляют интерес для исследования, на рисунках они взяты в рамку.

Рис.4-Фазовые портреты стандартного отображения при а) K=0.1, E=0.001, P=0.01

б) K=0.1, E=0.007, P=0.01

Далее были построены увеличенные фрагменты выделенных областей с теми же начальными условиями, что и полные фазовые портреты. На рис. 5 а, 5 б и 5 в видно, что на увеличенных фрагментах, так же, как и на полных, на участках фазовой плоскости, где в слабодиссипативных случаях находятся скопления аттракторов, в консервативном случае находятся островки устойчивости с иерархической структурой.

Рис.5-Фазовые портреты стандартного отображения а) K=0.1, E=0.001, P=0.01 б) K=0.1, E=0.007, P=0.01 в) K=0.1, E=0, P=0.01

2.2 Временные реализации.

Далее, были определены и записаны в массив координаты аттракторов, полученных на фазовой плоскости. Для того, чтобы определить периоды этих аттракторов, были построены временные реализации для различных начальных условий, которые брались из созданного массива.

На рис. 6 а показан аттрактор периода 7. Период определяется по количеству линий, которые образуют точки на плоскости. На рис. 6 б видно, что прямых линий из точек не получается, это указывает на то, что аттрактор является высокопериодическим.

Рис.6-Временные реализации а) аттрактор периода 7 б) высокопериодический аттрактор

2.3 Построение бифуркационных диаграмм для переменной ф по параметру К при фиксированных значениях параметра диссипации.

Для более детального исследования обнаруженных на фазовых портретах структур, были построены бифуркационные диаграммы для различных значений параметра диссипации, в окрестности параметра К=0.1 (на приведенных ниже бифуркационных диаграммах значение K=0.1 указано стрелкой над рисунком).

Рис.7-Бифуркационные диаграммы для переменной ф по параметру К а) для сетки начальных условий при Е=0.007 б) узкий интервал существования по параметру К для сетки начальных при Е=0.007, P=0.002

На рис. 7 а деревья построены для сетки начальных условий. Сетка начальных условий задавалась для V и ф в виде квадратной матрицы с шагом P=0.002 по обеим переменных. На рис. 7 б показан более узкий участок существования аттракторов по параметру K.

Анализируя полученные изображениях, можно сделать выводы, что интересующие нас аттракторы имеют малый интервал существования по параметру К (0.0999858-0.1000006 (Δ =0.0000148)), а прерывистость некоторых из них, может говорить о том, что бассейн притяжения данных аттракторов также очень мал.

2.4 Построение бифуркационных диаграмм для переменной ф по параметру Е при фиксированных значениях параметра К.

Были также построены бифуркационные диаграммы для переменной ф от *E* при фиксированном значении K=0.1.

Рис.8-Бифуркационные диаграммы для переменной ф по параметру E а) для сетки начальных условий в окрестности E=0.007 б) узкий интервал существования по параметру E для сетки начальных при E=0.007, P=0.002

На рис. 8 а и 8 б представлены бифуркационные диаграммы, как и в предыдущим случае, построенные для сетки начальных условий. Траектории построены в окрестности Е=0.007 (на приведенных ниже бифуркационных диаграммах значение Е=0.007 указано стрелкой над рисунком).

Как и в случае построения бифуркационных диаграмм для переменной ϕ по параметру К, мы видим, что, интересующие нас аттракторы имеют малый интервал существования по параметру ε (0.0069975-0.0070675(Δ =0.00007)), а также, наблюдается увеличение количества аттракторов на плоскости с уменьшением диссипации в системе.

Заключение

В данной работе численными методами было исследовано стандартное отображение на примере «гравитационной машины» Заславского. Были построены фазовые портреты консервативного и слабо-диссипативного стандартного отображения и их увеличенные фрагменты, временные реализации и бифуркационные диаграммы для переменной ф от К, в окрестности К=0.1, при различных фиксированных значениях параметра диссипации Е и для ф от Е, в окрестности Е=0.007, при фиксированных значениях К=0.1. При анализе слабодиссипативного фазового портрета были обнаружены структуры, состоящие из скопления вытянутых вдоль одной линии точек. При детальном исследовании выяснилось, что они расположены на месте островков устойчивости малого размера и являются набором периодических аттракторов разных периодов. Анализ временных реализаций показал, что в исследуемой структуре встречаются аттракторы различных периодов, в том числе и крайне высоких. Из бифуркационных диаграмм видно, что исследуемые аттракторы имеют очень короткий интервал существования по параметру К и Е и очень малые бассейны притяжения.

Список использованных источников

- Кузнецов, А.П. Бифуркации отображений. / А.П. Кузнецов, А.В. Савин, Ю.В. Седова, Л.В. Тюрюкина - Саратов: ООО Издательский центр "Наука", 2012, 196 с.
- Кузнецов, А.П. Введение в физику нелинейных отображений / А.П.
 Кузнецов, А.В. Савин, Л.В. Тюрюкина Саратов: изд-во «Научная книга», 2010, 134 с.
- Feudel, U. Map with more than 100 coexisting low-period periodic attractors. /
 U. Feudel, C. Grebogi, B. R. Hunt, J. A. Yorke // Physical Review E 1996 –
 V. 54 P. 71–81.
- 4 Feudel, U. Complex dynamics in multistable systems. / U. Feudel // International Journal of Bifurcation and Chaos – 2008 – V. 18 – № 6 – P. 1607– 1626.
- 5 Заславский, Г.М. Стохастичность динамических систем. / Г.М. Заславский
 Москва «Наука» главная редакция физико-математической литературы
 1984, 268 с.
- 6 Кузнецов, А.П. Сравнительный анализ приближенного и точного отображения «прыгающего шарика». / А.П. Кузнецов, А.П. Широков - Изв. Вузов «ПНД», т.8, №5, 2000, сс.72-81.
- Кузнецов, А.П. Нелинейные колебания. / А.П. Кузнецов, С.П. Кузнецов,
 Н.М. Рыскин М.:Физматлит, 2002. 292с
- 8 Heagy, J.F. A physical interpretation of the Hénon map, Physica / J.F Heagy //
 D, 57, Issues 3–4, 1992, P. 436-446
- 9 Райхл, Л.Е. Переход к хаосу в консервативных классических и квантовых системах / Л.Е.Райхл - М.: Институт компьютерных исследований; Ижевск: Регулярная и хаотическая динамика, 2008. — 756 с