Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нелинейной физики

Моделирование распространения электромагнитных волн и их взаимодействия с электронными потоками в замедляющей системе типа гребенка

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студентки <u>2</u> курса <u>214</u> группы

направления

03.04.01 Прикладные математика и физика

факультета нелинейных процессов

Корнишиной Анны Алексеевны

Научный руководитель доцент

А. Г. Рожнев

Зав. кафедрой нелинейной физики	
профессор, д.фм.н	Н.М. Рыскин

Саратов 2017 г.

ВВЕДЕНИЕ

Актуальность. Одной из основных задач радиофизики и электроники в настоящее время является освоение терагерцевого диапазона частот и создание источников ТГц излучения. Это обусловлено рядом особенностей данного излучения: в данном диапазоне лежат колебательные и вращательные спектры многих веществ; широкий диапазон частот привлекателен для систем передачи информации; ТГц излучение обладает высокой проникающей способностью и позволяет получать контрастное изображение, но в то же время обладает гораздо меньшим ионизирующим воздействием, чем рентгеновское излучение [1,2].

Одним из активно развивающихся направлений является создание вакуумных усилителей, к числу которых относится, в частности, ЛБВ усилителей с гребенчатой замедляющей системой (ЗС) [3-7]. Для разработки таких систем необходимы как можно более точные результаты анализа электродинамических характеристик, а также анализа взаимодействия волн с электродинамическим пучком. Для этого используются современные программные пакеты, предназначенные непосредственно для подобных моделирований, такие как "HFSS", "CST Suite", "Magick". Все вышеперечисленные программы являются дорогостоящими, и, например, "Magick" недоступен для использования в России. Для моделирования колебаний и волн в электродинамических структурах в трехмерной постановке может использоваться лицензионная программа Comsol Multiphysics [8], имеющаяся в Саратовском университете, однако с ее помощью невозможно проводить расчеты взаимодействия потоков заряженных частиц с СВЧ полями. Для этой цели может быть использована отечественная программа KARAT, разработанная В.П. Таракановым [9], которая является полностью электромагнитным кодом на базе РІС-метода. Он предназначен для решения нестационарных электродинамических задач, со сложной геометрией и включающих моделирования взаимодействия потоков заряженных, в общем случае, релятивистских частиц (электронов, ионов) с электромагнитными полями.

Целью работы является разработка методик и проведение трехмерного численного моделирование процессов распространения электромагнитных волн в периодической замедляющих структурах типа гребенка в прямоугольном волноводе, а также исследование взаимодействия этих волн с ленточными электронными пучками в ЛБВ терагерцевого диапазона с использованием программ 3D моделирования "Comsol Multiphysics" и "KARAT".

2

а) б) Рисунок 1 - Замедляющая система типа гребенка в прямоугольном волноводе: а) одиночная гребенка; б) сдвоенная гребенка.

Для достижения поставленной цели были решены следующие задачи:

1. С использованием программы "Comsol Multyphisics" построены трехмерные модели замедляющих систем типа одиночная гребенка и сдвоенные гребенки в прямоугольном волноводе и рассчитаны их электродинамические характеристики, необходимые для анализа взаимодействия в ЛБВ.

2. Средствами программы KARAT построена модель пространства взаимодействия ЛБВ терагерцевого диапазона, выбраны геометрические параметры, параметры пучка и численной схемы для проведения моделирования нестационарных процессов в данном приборе.

3. Выполнено исследование линейных режимов усиления в ЛБВ с помощью кода KARAT, полученные результаты сопоставлены с данными расчетов по 1D программе взаимодействия ЛБВ и с результатами моделирования с использованием 3D кода CST Particle Studio.

Научная новизна работы состоит в том, что впервые с использованием компьютерного 3D кода КАРАТ проведено исследование процессов усиления в ЛБВ терагерцевого диапазона путем прямого численного моделирования уравнений Максвелла и релятивистских уравнений движения электронов в пучке и показано, что результаты такого моделирования хорошо согласуются с результатами, полученными с помощью более простых методик.

Содержание работы состоит из Введения, трех основных разделов, Заключения и Списка использованных источников.

В первом разделе описаны методики моделирования периодических замедляющих систем СВЧ приборов терагерцевого диапазона с помощью программы Comsol Multyphisics [8]. К числу таких систем относятся одиночная гребенка в прямоугольном волноводе (рисунок 1a) и сдвоенная гребенка в прямоугольном волноводе (1б). Данный вид замедляющих систем активно используется в современных приборах

Рисунок 2 - Зависимость коэффициента замедления от длины волны (*a*) и сопротив-лений связи пространственных гармоник от частоты (*б*) для одиночной гребенки.

для генерации и усиления волн, следовательно, необходим точный расчет многих электродинамических параметров, характеризующих их свойства.

Для каждой из этих систем приводятся сведения, необходимые для расчета дисперсии и сопротивлений связи синхронных пучку пространственных гармоник из полученных в результате моделирования значений собственных частот и соответствующих распределений полей собственных мод колебаний в резонаторе, образованном одним периодом структуры. Некоторые результаты такого моделирования приведены на рисунках 2 и 3.

На рисунке 2а показаны рассчитанные зависимости коэффициента замедления ЗС в виде одиночной гребенки для нескольких пространственных гармоник, номера которых нанесены на рисунок рядом с кривыми. На рисунке 26 приведены рассчитанные значения усредненных по сечению пучка сопротивлений связи. Зеленым цветом отмечены результаты, полученные с помощью программы "Comsol Multiphysics", сплошные синие линии – расчет по методике работы [5], красные треугольники – расчет по программе HFSS. Как видно из рисунка, совпадение результатов, полученных всеми тремя программами является очень хорошим. Следует отметить также, что для одиночной гребенки сопротивление связи обратной (-1)-ой гармоники существенно превышает сопротивление связи прямой (+1)-ой гармоники, 3C гребенка поэтому типа одиночная преимущественно должна использоваться в генераторных приборах, в которых взаимодействие происходитс обратными волнами

Результаты расчетов электродинамических параметров 3С типа сдвоенная гребенка в прямоугольном волноводе приведены на рисунке 3. На рисунке 3a показан коэффициент замедления в зависимости от длины волны для двух низших мод 3С. Как из него следует, полосы пропускания этих мод смыкаются между собой таким образом, что линия дисперсии нулевой гармоники первой (основной) моды в области сдвигов фаз $0 < \phi < \pi$ непосредственно переходит

Рисунок 3 – Дисперсия (*a*) и сопротивления связи пространственных гармоник (б) ЗС типа сдвоенная гребенка в прямоугольном волноводе

в линию дисперсии второй моды в области сдвигов фаз $\pi < \phi < 2\pi$. Аналогично, нулевая гармоника второй моды в области $0 < \phi < \pi$ является аналитическим продолжением нулевой гармоники первой моды в области $\pi < \phi < 2\pi$. Эта особенность вида дисперсионных характеристик является следствием наличия в рассматриваемой структуре скользящей плоскости симметрии.

Зависимости сопротивления связи от частоты для (+1)-ой и (-1)-ой пространственных гармоник показаны на рисунке 36. Из него следует, что сопротивление связи прямой пространственной гармоники в рассматриваемой системе значительно превышают сопротивление связи обратной, поэтому эта система предпочтительна для использования в ЛБВ-усилителе.

Во втором разделе магистерской работы приводятся основные сведения о методе, используемом в программе КАRAT, для решения задач электродинамики в полной электромагнитной постановке. Кратко описан алгоритм метода конечных разностей во временной области (Finite Difference Time Domain Methd, FDTD) [10], лежащий в основе способа решения нестационарных уравнений Максвелла, а также метода частиц в ячейках (PIC-метода) для моделирования взаимодействия потоков заряженных частиц с электромагнитными полями. Также во втором разделе приведено подробное описание последовательности действий, необходимых для построения модели пространства взаимодействия ЛБВ с замедляющей системой гребенчатого типа. Для возможности сопоставления результатов моделирования с данными, полученными другими методами, размеры замедляющей системы и параметры пучка были выбраны такими же, как в работах [12,13], они приведены в таблице 1. Сформулированы правила задания геометрии системы, граничных условий, параметров пучка и фокусирующего магнитного поля.

На рисунке 4 показан общий вид системы (*a*), а также ее вид в плоскости *ZX* (*б*). Для согласования по обе стороны центрального регулярного участка 3С, содержащего штыри постоянной высоты, расположены участки структуры

Период ЗС	500 мкм
Ширина резонатора	400 мкм
Толщина штыря	100 мкм
Высота штыря	300 мкм
Высота пролетного канала	200 мкм
Ширина пролетного канала	800 мкм
Число периодов в однородной части ЗС	50
Число периодов на участках согласования	5
Поперечное сечение пучка	150×750
Напряжение пучка	20 кВ
Ток пучка	0.1 A

Таблица 1 – Параметры ЗС и электронного пучка ЛБВ

с постепенным изменением высоты штырей. Эти участки занимают пять периодов системы на входе и пять на выходе.

В первом подразделе **третьего раздела** выпускной работы рассматриваются вопросы, связанные с заданием параметров численной схемы, используемой при моделировании нестационарных процессов взаимодействия пучка с полем в ЛБВ. Этот процесс включает в себя выбор параметров конечно-разностной сетки и временного шага интегрирования. Здесь также определяются способы «включения» входного сигнала и электронного потока, которые позволяют исключить нежелательные численные эффекты, связанные с возможностью возникновения длинных переходных процессов или эффекта «численного самовозбуждения» системы фронтом электронного пучка.

В этом подразделе также исследуется способ задания параметров поглощающего слоя на правой границе расчетной области. Этот слой необходим для

а б Рисунок 4 – Общий вид пространства взаимодействия ЛБВ (*a*) и вид ЗС с согласующими участками в плоскости *ZX* (для лучшего понимания число периодов в центральной части ЗС уменьшено)

Рисунок 5 – зависимость проводимости поглощающего слоя от координаты *z*; голубая линия –слой из диэлектрика с конечной проводимостью, красная – PML слой.

поглощения усиленного излучения с минимально возможным уровнем отраженного излучения от правой границы системы. В программе KARAT возможны два способы задания поглощающего слоя, один в виде слоя диэлектрика с потерями, проводимость которого меняется в зависимости от расстояния между текущей точкой

и границей между расчетной

областью и поглощающим слоем. Второй способ состоит в использовании метода PML-слоев [11]. Зависимость проводимости материала от продольной координаты в пределах слоя показана на рисунке 5.

Для выбора типа поглощающего слоя сначала фиксировалась частота волны f = 210 ГГц. и рассчитывались значения КСВ от максимальной проводимости слоя σ_{max} . Эти зависимости представлены на рисунке 6 а. Было получено, что для обоих типов поглощающих слоев графики зависимостей $KCB(\sigma_{max})$ имеют качественно одинаковый вид. Сначала с ростом σ_{max} KCB уменьшается, затем достигает минимума и начинает увеличиваться. На втором этапе для каждого из типов поглощающего слоя задавалось фиксированной значение параметра σ_{max} , отвечающее минимуму соответствующей кривой на рисунке 6а, и рассчитывалась зависимость КСВ в диапазоне частот. Результаты этого моделирования показаны на рисунке 66. Из него следует, что для рассматриваемой системы использование двух различных типов поглощающих слоев приводит практически к одинаковым результатам. КСВ в полосе частот 50 ГГЦ для центральной частоты 220 ГГЦ составляет не более 1.1, что в пересчете на коэффициент отражения по мощности составляет менее 25 дБ. Следует отметить, однако, что использование PML слоя обеспечивает чуть более низкие отражения выходящего излучения от границы расчетной области, поэтому в дальнейших расчетах использовался именно этот тип поглощающего слоя. Значение параметра σ_{max} задавалось равным 1.6 См/м.

Далее в третьем разделе приведены результаты моделирования процесса транспортировки электронного пучка через пространство взаимодействия в отсутствии внешнего сигнала. Для этого был использована потенциальная модель расчета в программе KARAT. Это предусматривало решение не полной

Рисунок 6– выбор поглощающего слоя для моделирования ЛБВ. а- зависимость КСВ от параметра σ_{\max} при отражении моды TE_{10} от поглощающего слоя в прямоугольном волноводе. Синяя кривая – слой диэлектрика с потерями, красная кривая – PML – слой; б- Зависимость КСВ от частоты при отражении моды TE_{10} .

системы уравнений Максвелла для расчета собственных полей пучка, а решения уравнения Пуассона. В основной части системы, где высота штырей постоянна, магнитное поле задается однородным и его силовые линии идут параллельно оси z, а в выходной области с меняющейся высотой штырей гребенки силовые линии загибаются в плоскости *YZ* в сторону одной из боковых стенок структуры. За счет появившейся в результате компоненты силы Лоренца со стороны магнитного поля, он отклоняется в сторону верхней стенки выходного участка прямоугольного волновода и осаждается на ней.

Максимальное значение индукции магнитного поля B_0 в этих расчетах постепенно уменьшалось от 1.2 Т до 0.3 Т. Результаты этого моделирования показаны на рисунке 7 в виде проекций пространства взаимодействия на плоскости системы координат ZX и XY с нанесенными на них мгновенными положениями электронов. Рисунок 7*a* отвечает случаю $B_0 = 0.8$ Т. Видно, что пучок хорошо удерживается магнитным полем и полностью проходит через всю замедляющую систему вместе с согласующими участками. В поперечном сечении пучка наблюдается его небольшая деформация, что соответствует типичной картине транспортировки ленточного пучка в канале с прямоугольным поперечным сечением. Прохождение пучка при этом фокусирующем поле составляет 100%. При снижении поля B_0 до значения 0.3Т (рисунок 76) оседание пучка на ЗС начинается уже в ее средней части, поперечный контур пучка значительно деформирован, токопрохождение снижается до 95%. Проведенные расчеты демонстрируют возможность транспортировки электронного пучка с током 100 мА и сечением 750×150 мкм в канале с сечением 850×200 мкм на расстояние порядка 2.5 см и более, при приемлемых уровнях фокусирующего магнитного поля, порядка 0.6-0.8 Т.

Рисунок 7 - Прохождение электронного пучка через 3С без входного сигнала в плоскостях ZX и XY; $a - B_0 = 0.8$ T, $\delta - B_0 = 0.3$ T.

В последней части третьей главы приведены результаты 3D численного моделирования процесса усиления ЛБВ с использование полностью электромагнитного кода КАRAT. Моделирование процессов усиления проводилось на частотах, лежащих в диапазоне от 190 ГГЦ до 250 ГГц с шагом 5 ГГц. На каждой частоте проводилось отдельное моделирование нестационарных процессов, длительность которых составляла 5 нс. Мощность входного сигнала задавалась равной 0.1 Вт, что обеспечивало реализацию линейного режима усиления. Приведем сначала результаты моделирования для частоты входного сигнала f = 200 ГГц.

На рисунке 8 приведены зависимости B_y компоненты поля, I_z компоненты тока пучка и мгновенного значения мощности, передаваемой вдоль системы, от продольной координаты z после окончания переходных процессов,

Рисунок 8 – Распределение B_y - компоненты поля (*a*), I_z - компоненты тока (б) и мощности, передаваемой вдоль лампы (*в*) вдоль системы в момент t = 3 нс

Рисунок 9 – Зависимости компонент электрического поля в точке с координатами (0.04,0.04,0.1) (*a*) и в точке с координатами (0.04,0.04,3.29) в после включения электронного пучка и установления стационарного режима усиления

связанных с "включением" входного сигнала и электронного пучка. наблюдается усиление переменных компонент этих величин, связанное с взаимодействием в ЛБВ.

На рисунке 9 приведены временные зависимости E_x компоненты поля в двух точках системы, расположенных в участках прямоугольных волноводов, расположенных слева (*a*) и справа (*б*) от ЗС. Видно, что амплитуда колебаний поля в левом волноводе примерно в 4 раза больше амплитуды колебания в правом. Это соответствует коэффициенту усиления по мощности примерно 12 дБ.

Была также рассчитана зависимость коэффициента усиления ЛБВ в линейном режиме от частоты входного сигнала. Для этого проводилось многократное моделирование нестационарных процессов в приборе при новом значении частоты входного сигнала. Результаты этих расчетов приведены на рисунке 10. На нем точками синего цвета нанесены данные, полученные при мо-

Рисунок 10 - Зависимость коэффициента усиления ЛБВ от частоты в линейном режиме. Пояснения обозначений даны в тексте

делировании с помощью программы КАRAT, сплошная линия – моделирование по программе TWT1D, в которой режимы усиления рассчитываются с использованием уравнений одномерной теории ЛБВ [12], точками красного цвета – результаты моделирования по программе CST Particle Studio [13]. Из рисунка следует хорошее совпадение результатов, полученных всеми тремя методиками.

ЗАКЛЮЧЕНИЕ

В результате выполнения выпускной квалификационной работы магистра получены следующие основные результаты:

1. Разработана методика моделирования электромагнитных полей в гребенчатых замедляющих системах, используемых в качестве электродинамических структур ЛБВ терагерцевого диапазона с ленточным электронным пучком с использованием возможностей конечноэлементной программы "Comsol Multiphysics".

2. Проведены расчеты электродинамических параметров замедляющих структур типа одиночная и сдвоенная гребенки в прямоугольном волноводе, результаты которых могут быть использованы для анализа работы ЛБВ терагерцевого диапазона.

3. В программе моделирования процессов взаимодействия заряженных частиц с электромагнитными полями КАRAT построена модель пространства взаимодействия ЛБВ с 3С типа сдвоенная гребенка в прямоугольном волноводе и ленточным электронным пучком. Выбраны параметры физической модели и численной схемы, обеспечивающие адекватное моделирование процессов взаимодействия.

4. Проведено моделирование процессов транспортировки электронного пучка с прямоугольным поперечным сечением в пролетном канале пространства взаимодействия и установлено значение фокусирующего магнитного поля, обеспечивающее 100% токопрохождение пучка.

5. С помощью кода KARAT выполнены расчеты режимов линейного усиления ЛБВ терагерцевого диапазона рассматриваемой конструкции в полосе частот 190-240 ГГц. Проведено сопоставление полученных результатов с данными моделирования по одномерной теории ЛБВ и с данными расчетов по коммерческой программе CST Particle Studio показано хорошее совпадение результатов между собой.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Siegel P.H. Terahertz technology // IEEE Trans. Microwave Theory Tech. 2002. Vol. 50. No. 3. P. 910-928.
- 2. Siegel P.H. Terahertz technology in biology and medicine // IEEE Trans. Microwave Theory Tech. 2004. Vol. 52. No. 10. P. 2438-2447.
- Carlsten B.E. Modal analysis and gain calculations for a sheet electron beam in a ridged waveguide slow-wave structure // Phys. Plasmas. 2002. Vol. 9. P. 5088-5096.
- Carlsten B.E., Russell S.J., Earley L.M. et al. Technology development for a mm-wave sheet-beam traveling-wave tube // IEEE Trans. Plasma Sci. 2005. Vol. 33. P. 85-93.
- 5. Rozhnev, A. G., Ryskin, N. M., Karetnikova, T. A. et al, Studying characteristics of the slow-wave system of the traveling-wave tube with a sheet electron beam. Radiophysics and Quantum Electronics, 2014, Vol. 56 (8-9), P.542.
- 6. Каретникова Т.А., Рожнев А.Г., Рыскин Н.М. и др. Вопросы разработки усилителей и генераторов О-типа субтерагерцового диапазона частот // Радиотехника, 2014. №10. С. 46-51.
- Каретникова Т.А., Рожнев А.Г., Рыскин Н.М. и др. Моделирование лампы бегущей волны субтерагерцевого диапазона с замедляющей системой типа сдвоенной гребенки и ленточным электронным пучком // Радиотехника и электроника, 2016. Т. 61. №1. С. 54-60.
- 8. Comsol Multiphysics Engineering Simulation Software. COMSOL Inc., Burlington, MA USA. <u>http://www.comsol.com/products/multiphysics/</u>
- 9. Тараканов Вл.П Код КАРАТ компьютерный решатель задач прикладной электродинамики. Москва, 2012. Текстовый документ.
- 10. Taflove, A. and Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 2nd ed., Boston: Artech House, 2000.
- 11. Berenger J.P. A perfectly matched layer for the absorption of electromagnetic waves // J. Comp. Phys., 1994. Vol. 114. No. 2. Pp. 185-200.
- Karetnikova T. A., Benedik A. I., Rozhnev A. G., Ryskin N. M. et al. Development and modeling of G-band vacuum tube power amplifiers with sheet electron beam // Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on IEEE. Pp. 1-2
- Karetnikova T.A., Ryskin N.M., Rozhnev A.G., Fedotov A.E., Mishakin S.V., Ginzburg N.S. 3D Modeling of a Sheet-Beam Sub-THz Traveling Wave Tube // 18th International Vacuum Electronics Conference London, UK 24 - 26 April 2017. Technical Digest.