Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра аналитической химии и химической экологии

МИЦЕЛЛЯРНО-ЭКСТРАКЦИОННОЕ ИЗВЛЕЧЕНИЕ И ЦВЕТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ *n*-АМИНОБЕНЗОЙНОЙ КИСЛОТЫ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 4 курса, 411 группы направления 020100 «Химия»

Института химии

Соколовой Татьяны Алексеевны

Научный руководитель		
профессор, д.х.н.		С. Ю. Доронин
	подпись, дата	
Зав. кафедрой		
д.х.н., доцент		Т. Ю. Русанова
	подпись, дата	

Саратов 2017

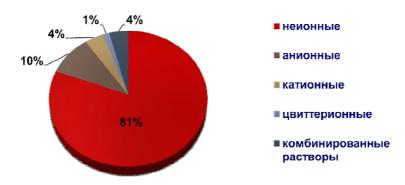
ВВЕДЕНИЕ

 (ΠAA) Первичные ароматические амины широко применяются промышленности И являются полупродуктами при множества органических соединений - пестицидов фармацевтических препаратов, взрывчатых веществ, каучуков, эпоксидных полимеров, азокрастелей, антиоксидантов, резиновых изделий. Кроме того, они образуются при сжигании растений и других органических материалов.

Многие ПАА обладают мощными токсикологическими свойствами, а также канцерогенной активностью. Комбинация потенциально высокого воздействия и высокой токсичности объясняет, почему использование этих химических веществ широко регулируется как в национальном, так и в европейском законодательстве.

Таким образом, существует очевидная необходимость в контроле ПАА на уровне ПДК и долей ПДК в биологических средах и объектах окружающей среды (величины ПДК находятся в интервале 0,05 – 0,1 мкг/мл).

Исходя из вышеизложенного, **целью** настоящего исследования явилась разработка высокочувствительного цветометрического метода определения ПАА, основанного на реакции мицеллярного катализа *n*-аминобензойной кислоты с *n*-диметиламинобензальдегидом и применением методологии экстракции в точке помутнения (cloud point, CP).


Актуальность работы. До настоящего времени в литературе отсутствовали данные о применении смешанных мицеллярных системна основе анионных и неионных поверхностно-активных веществ для определения *п*-аминобензойной кислоты.

Структура работы. Бакалаврскач работа общим объемом 52 страницы машинописного состоит из введения, двух основных глав: 1 глава — литературный обзор; 2 глава — экспериментальная часть (3 раздела) и заключения.

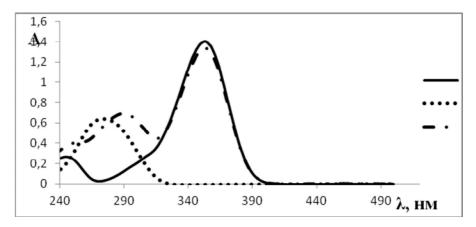
Основное содержание работы

Первый раздел – литературный обзор по мицеллярной экстракции в разделении, концентрировании и определении органических аналитов.

В аналитической практике для целей концентрирования, разделения и определения органических аналитов применяются практически все типы ПАВ и их смешанные композиции. Однако, наибольшее применение нашли неионные ПАВ, значительно реже используются анионные, катионные и цвиттер-ионные ПАВ в силу разных причин.

Второй раздел – экспериментальная часть, включает в себя следующие подразделы:

- 2.1. Реагенты и аппаратура
- 2.2. Спектрофотометрическое изучение реакции взаимодействия ДМАБА с *n*-АБК
- 2.2.1. Водная среда
- 2.2.2. Мицеллярная среда ДДС
- 2.3. Цветометрическое исследование системы: *n*-АБК ДМАБА ДДС Тритон X-114
- 2.3.1. Выбор оптимальных условий фазового разделения
- 2.3.1.1. Влияние массовой доли NaCl
- 2.3.1.2. Оценка формирования двухфазных систем при различных концентрациях Тритона X-114
- 2.3.1.3. Варьирование концентрации ДДС
- 2.3.1.4. Влияние концентрации ДМАБА
- 2.3.1.5. Зависимость цветометрических параметров мицеллярно насыщенных фаз от рН
- 2.3.2. Определение количественных характеристик мицеллярной экстракции *n*-AБК
- 2.3.3. Оценка правильности методики цветометрического определения *n*-AБК в водных средах


Спектрофотометрическое изучение реакции

взаимодействия ДМАБА с п-АБК

Реакция конденсации первичных ароматических аминов с альдегидами, согласно данным литературны, подчиняется общим закономерностям реакций нуклеофильного присоединения слабоосновных соединений (схема 1) и протекает в две стадии: присоединение с образованием интермедиата (аминоспирта); дегидратация аминоспирта:

2.2.1. Водная среда

Для исследования реакции конденсации ДМАБА с n-АБК зарегистрированы спектры исходных водных растворов реактантов (c = $5 \cdot 10^{-5}$ M), а также их смеси в среде цитратного буферного раствора (pH=3) (рисунок 1).

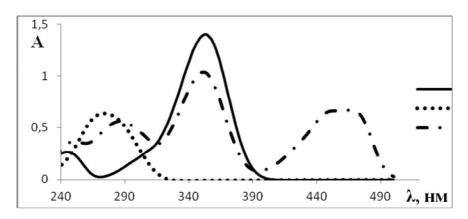
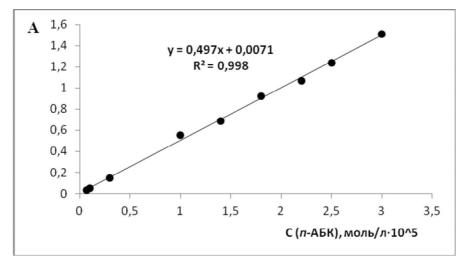


Рисунок 1 - Спектры поглощения: 1 - ДМАБА; 2 - n-АБК; 3 -система n-АБК - ДМАБА в ЦБ (pH=3); $c_{\text{реактантов}} = 5 \cdot 10^{-5} \text{ M}$

Как видно из рисунка 1, электронный спектр водного раствора ДМАБА имеет выраженный максимум поглощения при $\lambda_{max} = 353$ нм, электронный спектр водного раствора n-АБК имеет максимум поглощения при $\lambda_{max} = 274$ нм, а их реакционная смесь имеет два выраженных максимума поглощения при λ_{max} 1 = 290 нм и λ_{max} 2 =353 нм. Электронный спектр смеси и водного раствора ДМАБА имеют одинаковые максимумы поглощения и идентичную форму спектра, что свидетельствует о неизменности состояния реагента в смеси и отсутствии продукта реакции в этих условиях. Это свидетельствует о низкой скорости реакции при данных концентрациях реагентов ($C = 5 \cdot 10^5$ М).

Мицеллярная среда ДДС

Для исследования реакции конденсации ДМАБА с n-АБК зарегистрированы спектры исходных водных растворов реактантов (c = $5 \cdot 10^{-5}$ M), а также их смеси в среде цитратного буферного раствора (pH=3) в мицеллярной фазе ДДС (c = $7 \cdot 10^{-3}$ M) - рисунок 2.


Рисунок 2 - Спектры поглощения: 1 - ДМАБА; $2 - \pi - AБK$; $3 - \text{система} \ n - AБK - ДМАБА в ДДС. <math>c_{\text{pearentrog}} = 5 \cdot 10^{-5} \ \text{M}, \ c_{\text{ДДС}} = 7 \cdot 10^{-3} \ \text{M}$

Как видно из рисунка 2, в мицеллярном растворе ДДС регистрируется интенсивная полоса с $\lambda_{\text{max 1}} = 287$ нм, $\lambda_{\text{max 2}} = 352$ нм и $\lambda_{\text{max 3}} = 464$ нм. В отличие от спектров системы n-A-K — ДМАБА в воде, в присутствии ДДС наблюдается батохромный сдвиг на 110 нм, с выраженным гиперхромным

эффектом что свидетельствует об образовании продукта реакции и согласуется с ранее известными результатами.

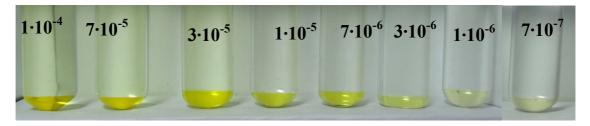
Определение количественных характеристик мицеллярной экстракции $n ext{-}\mathrm{A}\mathrm{B}\mathrm{K}$

Для расчета количественных характеристик мицеллярной экстракции *п*-АБК в мицеллярно-насыщенную фазу Тритона X-114 был построен градуировочный график зависимости оптической плотности от концентрации аналита, представленный на рисунке 3.

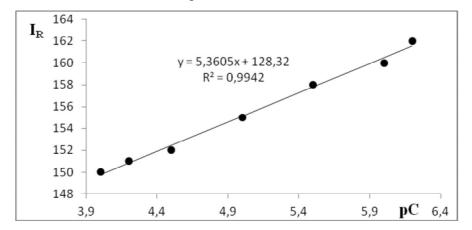
Рисунок 3– Градуировочный график A - C (*n*-AБК), моль/л·10 ⁻⁵

Рассчитаны количественные характеристики (коэффициент распределения, D и степень извлечения, R) экстракции n-АБК в исследуемой системе

С (<i>n</i> -АБК), М	D	R, %
2.10-5	156,93	89,2
5·10 ⁻⁶	134,23	87,6


Оценка правильности методики цветометрического определения *n*-АБК

Правильность определения n-АБК цветометрическим методом подтверждали методом введено-найдено. Результаты представлены в таблице 1.


Таблица 1 — Результаты экстракционно-цветометрического определения n-АБК в системе n-АБК — ДДС — Тритон X-114 — NaCl (n = 3, P =0,95)

	С, моль/л	Введено, мг/л	Найдено, мг/л	S _r
	2.10-5	3,0	3,30	
			3,15	0,03
п-АБК			3,15	
	2·10 ⁻⁶	0,3	0,36	
			0,36	0,05
			0,33	

C (n-АБК), M

Рисунок 4 - Влияние концентрации *n*-АБК на характер фазового разделения в системе: *n*-АБК – ДДС – Тритон X-114 – NaCl;

Рисунок 5 - Градуировочная зависимость интенсивности параметра цветности R от концентрации *n*-AБК в системе: *n*-AБК – ДМАБА - ДДС – Тритон X-114 – NaCl;

ВЫВОДЫ

- 1. Проведен анализ данных литературы по применению мицеллярной экстракции в разделении, концентрировании и определении органических аналитов глубиной в 25 лет.
- 2. Осуществлена оценка возможности применения смешанной мицеллярной системы на основе неионного (Тритон X-114) и анионного (додецилсульфат натрия, ДДС) ПАВ для эффективного концентрирования основания Шиффа продукта реакции конденсации *п*-диметиламинобензальдегида с *п*-аминобензойной кислотой.
- 3. Спектрофотометрически и цветометрически изучено влияние анионных ПАВ (додецилсульфат натрия) на реакцию взаимодействия *п*-диметиламинобензальдегида с *п*-аминобензойной кислотой при варьировании рH, концентрации реактантов и ПАВ.
- 4. Найдены оптимальные условия фазового разделения в системе *n*-АБК ДМАБА –ДДС Тритон X-114 NaCl
- 5. Рассчитаны количественные характеристики экстракции (коэффициенты распределения и степени извлечения) n-аминобензойной кислоты в мицеллярную фазу смешенного состава (Тритон X-114 и ДДС). Методом «введено-найдено» осуществлена оценка правильности определения n-АБК в воде.