Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра геофизики

«Определение граничного значения пористости продуктивных пластов Южно-Орловского месторождения »

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента 4 курса 403группы		
направление 05.03.01 геология		
геологического ф-та		
Работкина Николая Николаевич	на	
Научный руководитель		
К. гм.н., доцент		К.Б. Головин
подпись,	дата	
Зав. кафедрой		
К. г м.н., доцент		Е.Н. Волкова
	подпись, дата	

Введение. Актуальность работы. При решении задачи выделения пластов-коллекторов важное место занимают геофизические исследования скважин (ГИС), по данным которых осуществляется выделение флюидосодержащих пород в геологическом разрезе [1].

Объектом изучения данной бакалаврской работы является Южно-Орловское месторождение, расположенное в пределах восточного борта Сокской седловины, вблизи границы северо-западного борта Бузулукской впадины. Это месторождение интересно связи перспективами дальнейшего освоения юго-западного купола, который был выявлен по результатам сейсморазведочных работ МОГТ-2Д, проведенных на Южно-Орловском месторождении в 2000-2001 годах. Целью является выявление новых залежей в неизученной бурением юго-западной части месторождения [2].

Основной целью бакалаврской работы является определение граничного значения пористости продуктивных пластов Южно-Орловского месторождения АО «Самаранефтегаз» и доразведка залежей пласта ДЗфам,ДЗбур,ДІ',ДІ,ДІІ Южно - Орловское месторождение.

Для выполнения этой цели поставлены следующие задачи:

- 1. Дать краткую геолого-геофизическую характеристику района работ на основе имеющихся фондовых материалов.
- 2. Изучить методику исследований и вопросы интерпретации полученных результатов, рассмотреть имеющуюся учебно-методической научной литературе информацию, И характеризующую ГИС. методы входящие В комплекс промыслово-геофизических исследований на изучаемой территории.
- 3. Привести результаты, полученные с участием автора на исследуемой площади, в которых определить граничное значение пористости продуктивных пластов.

В основу бакалаврской работы положены материалы, собранные в период прохождения производственной практики: тематические отчеты, результаты геофизических работ, материалы бурения и испытания поисковых, разведочных и эксплуатационных скважин, результаты ГИС, материалы лабораторных исследований керна и др.

Основное содержание работы. В 1 разделе работы «Общие сведения месторождении»рассматривается изученность 0 территории геолого-геофизическими исследованиями (подраздел 1.1). Отмечается, что геологическое строение месторождения изучено по данным проведенных на лицензионном участке сейсморазведочных работ 2Д и 3Д и бурением 16 скважин 8 поисково-разведочных, 8 эксплуатационных. Даются сведения о геологическом разрезе месторождения (подраздел 1.2), который представлен структурным этажом: палеозойским складчатым фундаментом, и осадочным чехлом. (подраздел 1.3). Положительные структурные элементы, контролирующие нефтегазоносность, связаны со структурой палеозойского Южно-Орловское складчатого фундамента, поднятие расположено борта Сокской седловины, вблизи пределах восточного границы северо-западного борта Бузулукской впадины.

Указывается, что на месторождении всего пробурено 16 скважин; восемь поисково-разведочных, восемь эксплуатационных. Нефтеносность (подраздел 1.4) месторождения в процессе разбуривания изучалась по керну и промыслово - геофизическим материалам. Перспективные на нефть отложения опробовались испытателем пластов:- ДЗфам фаменского яруса;- ДЗбур бурегского горизонта;- ДІ', ДІ, ДІІ пашийского горизонта.

По данным комплекса ГИС отмечается в (подразделе 1.5) что пласт ДЗфам сложен преимущественно плотными породами с тонкими прослоями низкопористых коллекторов (Кп до 6%). Тем не менее, при опробовании в

эксплуатационной колонне получены значительные притоки нефти. В разрезе пласта выделяется 17 прослоев каверново-порового коллектора толщиной 0,6 – 10,9 м, суммарной толщиной 44 м.

Пласт ДЗбур приурочен к Западному куполу, залегает в кровельной части франского яруса верхнего девона и сложен карбонатами скрыто – и мелкокристаллическими трещиноватыми, местами кавернозными и битуминозными, по трещинам выпоты нефти.В разрезе пласта выделяется от семи до 23 проницаемых прослоев толщиной 0,6 – 43,6 м. Мощность плотных пропластков составляет 0,5 – 4,8 м. Суммарная эффективная мощность пласта достигает 67,4 м.

Пласт ДІ' залегает на средней глубине 2475 м в кровельной части пашийского горизонта и хорошо контролируется репером, который залегает в основании тиманского горизонта. Нефтенасыщенным керном пласт представлен только в разведочной скв.14.Сложен пласт песчаниками кварцевыми, мелкозернистыми, средней крепости, неслоистыми. Водонефтяной контакт пласта ДІ' ни по данным опробования, ни по данным ГИС не подсечен.

Пласт ДІ залегает на средней глубине 2485 м в верхней части пашийского горизонта, отделяясь от пласта ДІ' глинистой пачкой мощность 1.6 8,8 По ОТ ДО M. керну пласт сложен песчаниками буровато-коричневыми, кварцевыми, мелкозернистыми, средней плотности, нефтенасыщенными с прослоями алевролитов и глин. Пласт ДІ опробован в добывающей скв.24, где из интервала перфорации 2494-2501 м (абс. отм. -2346,5-2353,5 м) был получен фонтанный приток нефти.Водонефтяной раздел принят единым с пластами ДІ' и ДІІ на отметке минус 2363 м.

Пласт ДІІ приурочен к Южно-Орловскому поднятию и к Юго-Западному куполу, залегает на средней глубине 2500 м в нижней части пашийского горизонта. Представлен пласт, в основном, тремя прослоями

тонкозернистых, кварцевых песчаников, переслаивающихся с прослоями глин и алевролитов. Нефтенасыщение песчаников по керну отмечено в скв.13, 25.

Рассматриваемые залежи по типу относятся к пластовым, с незначительными по площади нефтяными зонами. Размеры залежи на Южно-Орловском поднятии 3,3×1,3 км, на Юго-Западном куполе – 1,4×0,55 км, высота 26,2 м и 20 м, соответственно.

Раздел 2 посвящен методам геофизических исследований скважин, применяемым на месторождении.

Указывается, что для каждой скважины, исследования были проведены Акустическим методом(АК).

Отмечено, что были выполнены замеры естественной гамма-активности (гамма-каротаж – Γ K) и нейтронного гамма-каротажа ($H\Gamma$ K).

Данные геофизических исследовании были проведены с целью доизучения геологического разреза, а также непосредственного выделения коллекторов, определения их насыщения и свойств, уточнения нефтеносности.

Кратко рассмотрены теоретические сведенияРадиоактивных методов в (подразделе 2.1) о методе естественной гамма-активности (подраздел 2.1.1), нейтронного гамма-каротажа (НГК)(подраздел 2.1.2) иАкустическим методом(АК)(подраздел 2.2). [М.В Калинникова Б.А. Головин К.Б. Головин 2005];

Кратко рассмотрена теоретические основы о пористости и проницаемости в (подразделе 2.3)

Методика определения коэффициента пористости по данным нейтронного гамма-каротажа была рассмотрена в (подразделе 2.3.1).

Определение Кп по данным АК основано на различии скорости распространения упругой волны (Vp или V3) в скелете породы и в

заполняющей пустотное пространство жидкости. Кратко описанно и рассмотрено в (подразделе 2.3.2)

В 3 разделе приводятся результаты выполненных исследований.

(Подраздел 3.1) «Геофизические исследования скважин в процессе бурения» отмечается, ЧТОВ структурных, поисковых, эксплуатационных бурящихся разведочных И скважинах, на поисково-оценочном разведочно-эксплуатационном И этапах геологоразведочных работ, материалы ГИС используют для:

-литологического и стратиграфического расчленения и корреляции разрезов пробуренных скважин;

- выделения в разрезах скважин коллекторов;

-разделения коллекторов на продуктивные и водоносные, а продуктивных коллекторов – на газо- и нефтенасыщенные;

-определения положений контактов между пластовыми флюидами (ГНК, ВНК, ГВК), эффективных газо- и нефтенасыщенных толщин, коэффициентов глинистости, пористости, газо- и нефтенасыщенности, проницаемости, вытеснения;

-определения пластовых давлений и температур, неоднородности объектов;

-прогноза потенциальных дебитов, а также прогнозирования геологического разреза в околоскважинном и межскважинном пространствах.

В скважинах, бурящихся на площадях с выявленной промышленной нефтегазоносностью, материалы ГИС должны обеспечить определение подсчетных параметров. Проектируемый комплекс должен включать: КС, ПС, ДС, АК, НГК, ГК, МК, БКЗ, БК, МБК, ИК, ГГП, резистивиметрию, кавернометрию - в масштабе глубин 1:200.

(Подраздел 3.2) включал в себя определение пористости пород продуктивных пластов Южно-Орловского месторождения оценивались по данным анализа керна и по материалам геофизических исследований скважин. Проницаемость, помимо керновых исследований рассчитывалась по результатам интерпретации информации, полученной в ходе проведения гидродинамических исследований скважин и с использованием зависимостей проницаемости от пористости (Кпр=f(Кп)).Определение граничного значения пористости пласта ДЗбур проводилось корреляционным способом, приведенным в «Методических рекомендациях по подсчету геологических запасов нефти и газа объемным методом» [9].

Таблица 3.1 Определение Кп^{гр}по методу притока

№	Пласт	Кп%	Ипт
10	Д3фам	1,5	Нет притока
10	Д3бур	5,6	Нет притока
10	ДІ'	7,4	Нет притока
10	ДІ	6,3	Нет притока
10	ДІІ	9,9	Нефть
13	Д3фам	2,2	Нет притока
13	Д3бур	6,8	Нет притока
13	ДІ'	8,5	Вода
13	ДІ	6,8	Нет притока
13	ДІІ	9,7	Нефть
14	Д3фам	2,4	Нет притока
14	Д3бур	5,5	Нет притока
14	ДІ'	8,8	Нефть
14	ДІ	9,9	Нефть
14	ДІІ	9,8	Нефть
20	Д3фам	2,6	Нет притока

20	Д3бур	5,6	Нет притока
20	ДІ'	9,8	Нефть
20	ДІ	9,8	Нефть
20	ДІІ	9,9	Нефть
23	Д3фам	2,8	Нет притока
23	Д3бур	6,3	Вода
23	ДІ'	9,8	Нет притока
23	ДІ	9,7	Нефть
23	ДП	9,8	Нефть

Продолжение таблицы 3.1

25	Д3фам	3,1	Вода
25	ДЗбур	6,6	Нефть
25	ДІ'	5,4	Нет притока
25	ДІ	7,2	Нет притока
25	ДП	9,4	Вода
30	ДЗфам	4,4	Нефть
30	ДЗбур	6,8	Нефть
30	ДІ'	5,1	Нет притока
30	ДІ	7,4	Нет притока
30	ДІІ	6,5	Нет притока
31	ДЗфам	4,2	Нефть
31	ДЗбур	7,9	Нефть
31	ДІ'	4,6	Нет притока
31	ДІ	7,6	Нет притока
31	ДП	7,5	Нет притока
32	ДЗфам	3,9	Нефть
32	Д3бур	7,7	Нефть

32	ДІ'	4,8	Нет притока
32	ДІ	7,6	Нет притока
32	ДІІ	6,7	Нет притока

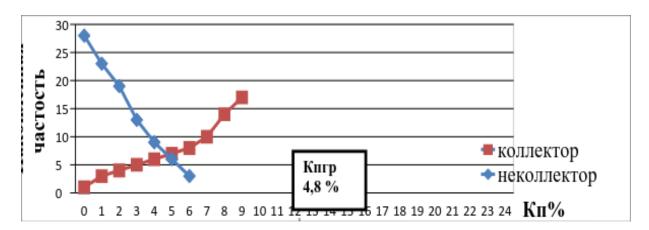


Рисунок 3.1 Граничное значение пористости продуктивных пластов Южно-Орловского месторождения

Поскольку соответствующих исследований собственного керна пласта ДЗбур не проводилось, при построении корреляционной зависимости Кп=f(Кп) использовались керновые данные продуктивных бурегских отложений ряда месторождений Самарской области [10].

Заключение. Основной целью работы являлось найти граничное значение пористости продуктивных пластов Южно-Орловского месторождения. Для достижения цели были решены следующие задачи:

Анализ материала полученного во время прохождения производственной практике

Изучил геолого-геофизическую характеристику района на основе имеющихся фондовых материалов

Применилметодику исследований, рассмотрел имеющуюся в учебно-методической и научной литературе информацию, характеризующую

методы ГИС, входящие в комплекс промыслово-геофизических исследований на изучаемой территории.

Результаты, полученные с участием автора на исследуемой площади, по которым определил граничное значение пористости продуктивных пластов Южно-Орловского месторождения.

В данной работе мы применили методы ГИС для определения граничного значения пористости продуктивных пластов Южно-Орловского месторождения по пластам ДЗфам, ДЗбур, ДІ', ДІ, ДІІ. Приведенные данные работе проанализированы ПО 9-ти скважинам, полученным ПО геофизическим исследованиям скважины, а именно акустическеским методом и методом нейтронного гамма каротажа по полученным данным построен график граничного значения пористости. Таким образом мы определили что на Южно-Орловском месторождении граничное значение пористости продуктивных пластов составляет 4,8%