Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра микробиологии и физиологии растений

ОЦЕНКА РАНОЗАЖИВЛЯЮЩЕЙ АКТИВНОСТИ L-И D-АСКОРБАТОВ ХИТОЗАНА НА МОДЕЛИ ОЖОГОВОЙ РАНЫ У КРЫС

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студентки 2 курса 241 группы направления подготовки магистратуры 060401 Биология биологического факультета
Тычининой Яны Олеговны

Научный руководитель к.б.н., доцент		Е. В. Глинская
	дата, подпись	
Заведующий кафедрой		
д.б.н., профессор		С. А. Степанов
	дата, подпись	

ВВЕДЕНИЕ

Лечение термических поражений в практике хирургии до настоящего времени остается одной из наиболее сложных проблем, имеющих не только медицинскую, но и социально-экономическую значимость. Разнообразие лекарственных средств, имеющихся на фармацевтическом рынке, ставит хирурга-комбустиолога перед необходимостью подбора наиболее эффективных препаратов в каждом конкретном случае [1].

В отечественной научной литературе имеется целый ряд сообщений об успешном лечении ран различной этиологии с помощью лекарственных средств, включающих в свой состав хитозан (ХТЗ) или его соль - аскорбат хитозана, получаемый из ХТЗ и аскорбиновой кислоты (АК) [2, 3]. Показано, что ХТЗ и его производные обладают ранозаживляющим [4] и противовоспалительным действием [5], а также антибактериальной [6, 7], фунгицидной [8] и антитоксической [9] активностями, что крайне важно при лечении ран. В качестве органического лиганда в составе соли выбрана АК, поскольку она определяет нормальное течение репаративных процессов за счет стимуляции синтеза коллагена [10].

Однако АК существует в виде *L*- и *D*-изоформ. Известно, что препараты, которые производятся в виде стереоизомеров, могут существенно различаться своими фармакокинетическими и фармакодинамическими свойствами, что не может не отражаться на эффективности проводимого лечения [11]. Более того, есть опасность, что эти лекарственные средства будут оказывать негативное терапевтическое действие [12, 13, 14].

В настоящее время отсутствуют какие-либо сведения о зависимости ранозаживляющей и биоцидной активности аскорбата XT3 от вида стереоизомера АК, который был использован при приготовлении препарата.

Цели и задачи исследования.

Цель настоящей работы - сравнение антибактериальной и ранозаживляющей активностей гидрогелей *L*- и *D*-аскорбата хитозана в

условиях *in vivo*. Для достижения указанной цели были поставлены следующие задачи:

- 1. Оценить антибактериальное действие гидрогелей на основе низкомолекулярного хитозана и *L* и *D*-стереоизоформ аскорбиновой кислоты при аппликациях на ожоговую рану у крыс.
- 2. Сравнить с помощью планиметрических методов ранозаживляющую активность гидрогелей L- и D-аскорбатов хитозана на модели ожога IIIБ у крыс.

Материал и методы исследования. Исследования проводились с 2015-2016гг. Объектами исследования служили концентрированные гидрогели $XT3 \cdot L$ -АК и $XT3 \cdot D$ -АК, предоставленные сотрудниками отдела **BMC** ОНИ НС и БС ФГБОУ ВО Саратовского национального университета Н. исследовательского государственного имени Г. Чернышевского.

В качестве модели использовали 17 беспородных половозрелых крыссамок с массой тела 220-250 г. Животных содержали в стандартных условиях вивария. Термические ожоги IIIБ воспроизводили высокотемпературным контактным способом в межлопаточной области крыс в проекции шейноотдела. При работе экспериментальными грудного cживотными Европейской руководствовались требованиями конвенции ПО защите лабораторных животных и приказом Минздрава СССР № 755 от 12.08.1977 г. Все болезненные для крыс манипуляции выполняли в условиях асептики под эфирным наркозом. В качестве препарата сравнения использовали противовоспалительную антимикробную мазь «Левомеколь-вет» (ООО НПП «Агрофарм», РФ). Количественное определение микроорганизмов в 1 мл раневого отделяемого выполняли методом Lindsey (1982).

Структура и объём работы. Работа изложена на 56 страницах, включает в себя введение, 3 главы, заключение, выводы, список использованных источников. Работа проиллюстрирована 5 таблицами и 12 рисунками. Список использованных источников включает 101 наименование.

Научная новизна. Впервые представлены результаты комплексного исследования ранозаживляющего действия солей XT3, приготовленных на основе низкомолекулярного XT3 и *L*- и *D*-стереоизомеров АК. Впервые показано, что аскорбаты хитозана обладают выраженными антимикробным и репаративно-регенеративным свойствами при обработке экспериментальных ожоговых ран у крыс. Впервые доказано, что *D*-аскорбат XT3 способствует более быстрому заживлению ожога IIIБ у крыс, чем *L*-аскорбат XT3.

Научная значимость. Полученные результаты рекомендуют использовать $XT3 \cdot D$ -АК в качестве нового ранозаживляющего препарата, так как он не обладает побочными эффектами и способен подавлять развитие инфекционного процесса без применения антибактериальных препаратов.

Положения, выносимые на защиту:

- 1. Антибактериальныя активность $XT3 \cdot D$ -АК статистически значимо превышает таковую у $XT3 \cdot L$ -АК.
- 2. Заживление ожога IIIБ степени у крыс наиболее высокими темпами протекает на фоне применения гидрогеля XT3·*D*-AK.

Основное содержание работы

В главе «Основная часть» представлен анализ литературных данных о влиянии пространственной структуры на биологическую активность соединений, хиральности и проблемы хиральной чистоты лекарственных препаратов, биологических свойствах хитозана и аскорбиновой кислоты, а также применение в медицине препаратов, содержащих в своем составе XT3 и АК.

В главе «Результаты исследования» изложены экспериментально полученные данные о оценке бактериальной обсемененности ожогов на фоне применения гидрогелей, о сравнение ранозаживляющей активности гидрогелей $XT3\cdot L$ -АК и $XT3\cdot D$ -АК.

Ранозаживляющее действие гидрогелей *L*- и *D*-аскорбатов XT3 изучали путем наблюдения за динамикой процессов заживления ожогов IIIБ степени

у крыс. Оценивали также обще самочувствие животных и состояние окружающих рану тканей.

Нанесенный 0,5 % термический ТОЖО составил относительно поверхности тела крыс. В связи с тем, что ожог ШБ степени является весьма болезненной тяжелой травмой, TO ДЛЯ снижения летальности экспериментальных животных на 3-и сутки провели процедуру острой некрэктомии - раннего удаления ожогового струпа. В результате этой операции средняя площадь поверхности раны составила 304.2 ± 4.7 мм².

Всех прооперированных крыс разделили на контрольную (5 крыс) и две опытные (по 6 крыс) группы. Животным из группы контроля на обнаженную раневую поверхность тонким слоем наносили препарат «Левомеколь-вет» 1 раз в сутки ежедневно до выздоровления. Крысам из экспериментальных групп на поврежденный участок однократно наносили гидрогель XT3·L-АК (группа № 1) или XT3·D-АК (группа № 2). При проведении эксперимента поверхность раны не изолировали от внешней среды. На 2-е сутки после операции у крыс в раневом ложе формировалась раневая корка, состоящая из лимфы и форменных элементов свернувшейся крови. В экспериментальных группах у крыс в формировании раневой корки принимали участие также хитозановые гидрогели.

В ходе эксперимента осложнения течения раневого процесса у крыс не наблюдалось. Также было установлено, что гидрогели аскорбата XT3 не вызывали у подопытных животных каких-либо отрицательных реакций, не проявляли токсического и раздражающего действия.

Проведенный бактериологический анализ раневого отделяемого не выявил у крыс обсемененности ожоговых ран условно-патогенными и патогенными микроорганизмами в количестве, необходимом для развития инфекционного процесса. Первый посев раневого отделяемого выполняли на 3-й день после нанесения ожога IIIБ в момент проведения ранней некрэктомии. Положительный результат бактериологического анализа

отмечался у 50 - 67 % животных, как в контрольной, так и в двух экспериментальных группах

Несмотря на то, что раны были обсеменены микроорганизмами, признаки нагноения или инфекционного процесса отсутствовали. В 100% случаев микроорганизмы, выделенные из ран, были представлены монокультурой условно-патогенных и патогенных бактерий *E. coli* и *S. aureus*. Однако их количество не превышало величины 10³ КОЕ в 1 г раневого отделяемого.

После отторжения раневой корки (с 21-х по 28-е сутки) проводили повторный посев раневого отделяемого. Следует отметить, большинства из-за крыс ИХ высокой подвижности происходило преждевременное отторжение раневой корки. При этом молодой эпителий травмировался, и наблюдалось капиллярное кровотечение. Кровь из ран собирали петлей и проводили бактериологический анализ.

Установлено, что в ранах крыс после отторжения раневой корки микрофлора сохранялась лишь у 1 (20,0 %) животного из контрольной группы и у 1 (16,7%) животного из группы № 1. В экспериментальной группе № 2 на протяжении всего срока культивирования рост микроорганизмов не отмечался.

Таким образом, бактериологический анализ показал, что во всех трех группах экспериментальных животных максимальная степень обсемененности ран в процессе заживления не превышала величину $10^3 \, \text{KOE/r}$. Низкая обсемененность ран явилась причиной отсутствия развития инфекционного процесса.

Проведенные исследования сравнения ранозаживляющей активности гидрогелей показали, что в экспериментальных группах № 1 и № 2 сокращение раневой поверхности шло высокими темпами на протяжении всего эксперимента

Под гидрогелем XT3·*D*-АК средний срок ранозаживления был на 10 суток короче ($p \le 0.05$), чем в группе контроля и на 7 суток, чем в экспериментальной группе № 1. В группе № 1, по сравнению с контрольной группой, ранозаживление шло в среднем на 3 дня быстрее ($p \le 0.05$).

Установлено, что под гидрогелем XT3·*D*-АК средний срок ранозаживления был на 10 суток короче ($p \le 0.05$), чем в группе контроля, и на 7 суток короче ($p \le 0.05$), чем в экспериментальной группе № 1. В группе №1, по сравнению с контрольной группой, ранозаживление шло в среднем на 3 дня быстрее ($p \le 0.05$).

После проведения некрэктомии в период с 1-х по 3-и сутки убыль площади (ΔS ,%) раневой поверхности и скорость заживления ран у подопытных животных из экспериментальных групп № 1 и № 2 были статистически значимо выше по сравнению с аналогичными показателями в контроле. В группе № 2 (XT3·*D*-AK) убыль величины S была максимальной (15,5 % в сутки) и статистически значимо превышала аналогичные показатели в контроле (9,7 %) и в группе № 1 (12,9 %).

В период с 3-х по 21-е сутки во всех группах уменьшение площади поверхности раны шло равными темпами (0,3 мм²/сут). Это объясняется тем, что в этот период об изменении площадь раневой поверхности судили только по уменьшению площади поверхности раневой корки в результате ее подсыхания и резорбции. О скорости эпителизации раны можно было бы судить только при условии иссечения вторичного струпа, что не предполагалось условиями данного эксперимента.

В период с 21-х по 28-е сутки у всех подопытных животных раны полностью очистились от раневой корки. Средняя площадь поверхности раны в экспериментальной группе № 1 в этот период была в 2 раза меньше (7,3 мм²), чем в контрольной группе животных, и это различие было статистически значимым. В группе контроля к 28-м суткам площадь раны уменьшилась в 20 раз и в среднем составила 15,0 мм².

К 28-му дню у крыс из экспериментальной группы № 2 наблюдалось полное заживление ран и восстановление волосяного покрова. Скорость заживления была в 2 раза выше по сравнению с аналогичными показателями в двух других группах.

Проведенные исследования показали, что крысы хорошо переносят местное применение гидрогелей на основе L- и D-аскорбатов XT3. Препараты не оказывают раздражающего и токсического действия, не вызывают у подопытных животных отрицательные реакции и осложнение течения раневого процесса, не влияют на двигательную активность животных.

Несмотря на то, что животные из групп № 1 (XT3·L-AK) и № 2 (XT3·D-AK) содержались в виварии без закрытия раневого ложа и без антибактериальной терапии, бактериологический анализ раневого отделяемого не выявил ни одного случая обсемененности ран патогенными и условно-патогенными бактериями выше диагностического титра 10^3 КОЕ/мл.

В ходе планиметрического исследования было установлено, что после ранней некрэктомии заживление ожога IIIБ степени протекает более эффективно при нанесении на рану аскорбатов XT3. В этих группах отмечались раннее купирование воспаления и более быстрые темпы развития репаративно-регенеративных процессов. По всей видимости, это связано со способностью молекул XT3 вызывать купирование воспалительных процессов в поврежденных тканях за счет подавления продукции медиаторов воспаления.

Кроме того, наши эксперименты показали, что ранозаживление под гидрогелем D-аскорбата XT3 протекает более активно, чем под L-аскорбатом XT3, несмотря на то, что D-АК обладает более слабой способностью стимулировать синтез коллагена и пролиферацию фибробластов по сравнению с L-АК.

Установлено, что сроки заживления ран под гидрогелем *D*-аскорбата XT3 были на 7 суток короче, чем под гидрогелем *L*-аскорбата XT3, а средняя линейная скорость заживления раны и темпы убыли площади раневой поверхности были статистически значимо выше, чем при использовании гидрогеля *L*-аскорбата XT3. Молекулярные механизмы наблюдаемого явления на данный момент не известны. Однако абсолютно очевидно, что стереоизомеры АК, взаимодействуя с хиральными молекулами на поверхности клеток, могут оказывать разное по силе воздействие.

выводы:

- 1. При заживлении ожогов IIIБ у крыс под гидрогелями L- и D-аскорбата XT3 не установлены случаи развития инфекционного процесса. Бактериологический анализ показал, что во всех трех группах экспериментальных животных максимальная степень обсемененности ран в процессе заживления не превышала величину $10^3\,\mathrm{KOE/r}$.
- 2. Применение гидрогеля D-аскорбата XT3 статистически значимо повышает среднюю линейную скорость заживления раны и темпы убыли площади раневой поверхности по сравнению с «Левомеколем-вет» и гидрогелем L-аскорбата XT3. Сроки заживления ожога ШБ под гидрогелем D-аскорбата XT3 на 10 сут короче, чем в контроле, и на 7 сут короче, чем под гидрогелем L-аскорбата XT3.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ:

- Алексеев, А. А. Местное лечение ожоговых ран / А. А. Алексеев,
 М. Г. Крутиков // Рос. мед. журнал. 2000. № 5. С. 51–53.
- 2. Островский, Н. В. Наноструктурные биопокрытия на основе хитозана в практике клиники термических поражений / Н. В. Островский, И. Б. Белянина, Р. Д. Ермолова, Е. А. Хмельницкая, И. В. Зудина. Матер. одиннадцатой междунар. конф.: «Современные перспективы в исследовании хитина и хитозана» (Росхит 2012). Мурманск, 25-30 июня 2012. С. 392–397.
- 3. Иванов, П. В. Противовоспалительный эффект аскорбата хитозана в комплексной терапии заболеваний пародонта. / П. В. Иванов, И. В. Зудина, Н. В. Булкина, А. П. Ведяева, Е. В. Иванова // Современные проблемы науки и образования: электронный журнал. 2013. № 4. Сведения доступны также по Интернет: www.science-education.ru/110-9517. (дата обращения: 21.07.2014). Яз. рус.
- 4. Шеремет, А. С. Ранозаживляющие свойства низкомолекулярного хитозана / А. С. Шеремет, Т. А. Байтукалов, О. А. Богословская. Матер. 8-й междунар. конф.: «Современные перспективы в исследовании хитина и хитозана». М., 2006. С. 262–264.
- Зудина, И. В. Противовоспалительный эффект аскорбата хитозана в комплексной терапии заболеваний пародонта / И. В. Зудина, Н. В. Булкина, П. В. Иванов, А. П. Ведяева, Е. В. Иванова // Российский стоматологический журнал. 2013. № 2. С. 16–19.
- 6. Куликов, С. Н. Природные поликатионы как средство повышения эффективности антибактериальных белков / С. Н. Куликов // Вестник

- Казанского технологического университета. 2014. Т. 17, № 23. С. 224–226.
- Raafat, D. Development of in vitro resistance to chitosan is related to changes in cell envelope structure of Staphylococcus aureus / D. Raafat, N. Leib, M. Wilmes, P. François, J. Schrenzel, H. G. Sahl // Carbohydr Polym. 2017. Vol. 157. P. 146–155.
- 8. Tikhonov, V. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives / V. Tikhonov, E. Stepnova, V. Babak // Carbohydrate Polymers. 2006. Vol. 64. P. 66–72.
- Иванушко, Л. А. Антибактериальные и антитоксические свойства хитозана и его производных / Л. А. Иванушко, Т. Ф. Соловьева, Т. С. Запорожец, Л. М. Сомова, В. И. Горбач // Тихоокеанский медицинский журнал. 2009. № 3. С. 82–85.
- 10. Sheldon, R. Regulation of Collagen Biosynthesis by Ascorbic Acid: A Review / R. Sheldon, M. D. Pinnell // The Yale journal of biology and medicine. 1985. № 58. P. 553–559.
- 11.Chhabra, N. A review of drug isomerism and its significance / N. Chhabra,M. L. Aseri, D. Padmanabhan // Int J Appl Basic Med Res. 2013. Vol. 3,№ 1. P. 16 18.
- 12. Спасов, А. А. Фармакология стереоизомеров лекарственных веществ / А. А. Спасов и др.; ред. А. А. Спасов; Волгоградский медицинский университет (Волгоград), Волгоградский медицинский научный центр. Волгоград: Изд-во ВолгГМУ, 2011. 348 с.
- 13. Hutt, A. J. Chirality and pharmacokinetics: an area of neglected dimensionality / A. J. Hutt. Drug Metabol Drug Interact. 2007. Vol. 22, № 2–3. P. 79-112.

14. Testa, B. Types of stereoselectivity in drug metabolism: a heuristic approach / B. Testa // Drug Metab Rev. 2015. Vol. 47, № 2. P. 239–251.