Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Исследование волноводных фотонных структур на основе резонансных диафрагм

НАУЧНЫЙ ДОКЛАД ОБ ОСНОВНЫХ РЕЗУЛЬТАТАХ ПОДГОТОВЛЕННОЙ НАУЧНО-КВАЛИФИКАЦИОННОЙ РАБОТЫ аспиранта 4 курса 401 группы направления 11.06.01 «Электроника, радиотехника и системы связи» факультета нано- и биомедицинских технологий

Евтеева Сергея Геннадиевича

Научный руководитель профессор, д.ф.-м.н.

Nolo

Д.А. Усанов

Саратов 2017

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Структуры с брэгговской запрещенной зоной в СВЧ-диапазоне, часто называемые СВЧ фотонными кристаллами, обладают свойствами, обеспечивающими возможность создания различных типов СВЧустройств, среди которых полосовые фильтры, направленные ответвители, перестраиваемые резонаторы, миниатюрные антенны, согласованные нагрузки [4].

Для СВЧ создания фотонных кристаллов использовались прямоугольные коаксиальные волноводы, микрополосковые, И копланарные, щелевые и волноводно-щелевые линии [5,6]. Отличительной особенностью фотонных кристаллов СВЧ-диапазона является высокая технологичность производства, макроскопичность их элементов, составляющих их конструкцию, возможность реализации фотонных кристаллов на основе упорядоченных массивов элементов различной формы и конфигурации.

Периодические структуры на основе резонаторов в качестве замедляющих систем для вакуумных СВЧ-приборов и СВЧ-фильтров были описаны еще в 60-е года прошлого века [7, 8]. Они предназначались для использования в качестве замедляющих систем в этих приборах, обеспечивающих оптимальное взаимодействие электронного потока с электромагнитной волной. Разновидностью структур, обладающих запрещенной фотонной зоной, является микрополосковая структура кольцевого типа, в которой реализуется многократное отражение от неоднородности с введенной индуктивностью, шунтирующей емкостной разрыв в верхней полоске микрополосковой линии [9, 10]. Фотонный кристалл с периодической структурой из кольцевых резонаторов, сформированных на поверхности сегнетоэлектрической гетероструктуры, описан в [11]. Авторами [1] предложен волноводный фотонный кристалл, состоящий из периодически расположенных металлических резонансных диафрагм, нанесенных на диэлектрическую подложку.

При наличии дефекта в структуре фотонного кристалла, нарушающего периодичность, в виде изменения геометрических размеров и/или электрофизических параметров одного или нескольких элементов, в фотонной запрещенной зоне может проявляться резонансная особенность, называемая примесной модой колебаний [12].

Изменением параметров создаваемых в фотонном кристалле нарушений, в том числе с использованием температурных [13], электрических [14], магнитных полей, возможно управление частотными положениями примесной моды колебаний в запрещённой зоне фотонного кристалла. Известно, что резонансные волноводные диафрагмы являются часто применяемыми элементами конструкции аттенюаторов и выключателей на p-i-n-диодах. Малые геометрические размеры щели обеспечивают эффективное взаимодействие полупроводниковых элементов, имеющих малые габариты, с полем волновода, а использование резонансной диафрагмы в измерительных системах позволяет повысить локальность измерений, поэтому рассмотрение свойств фотонных кристаллов на волноводных резонансных диафрагмах является актуальным.

Цель научной квалификационной работы:

Исследование влияния различных параметров волноводных фотонных структур на основе резонансных диафрагм на АЧХ.

Исследование СВЧ фотонных кристаллов на основе резонансных диафрагм с нарушением периодичности в виде n–i–p–i–n-диодной матрицы, выполняющей роль проводящего слоя.

Для достижения поставленной цели были решены следующие задачи:

Экспериментальное исследование резонатора на основе волноводного фотонного кристалла с неоднородными структурами в виде резонансной диафрагмы.

Компьютерное моделирование и экспериментальное исследование амплитудно-частотных характеристик СВЧ фотонных кристаллов на основе резонансных диафрагм с нарушением периодичности в виде n–i–p–i–n-диодной матрицы, выполняющей роль проводящего слоя.

Исследование фотонного кристалла с электрически управляемым с помощью n–i–p–i–n-диодной структуры размером щели диафрагмы.

Практическая реализация на основе фотонного кристалла на резонансных диафрагмах электрически управляемого модулятора и переключателя СВЧ-сигнала в схеме на отражение.

Новизна исследований, проведенных в ходе научной квалификационной работы, состоит в следующем:

Разработана И экспериментально реализована конструкция резонатора на основе фотонного кристалла с резонансной диафрагмой. Показана возможность усиления резонансных особенностей АЧХ фотонного кристалла с помощью диафрагмы; показана возможность использования СВЧ резонатора в виде фотонного кристалла с резонансной измерения параметров материалов диафрагмой высокой для С чувствительность чувствительностью; достигнута коэффициента отражения к изменению диэлектрической проницаемости исследуемого образца, равная 100 дБ/є.

Проведен анализ влияния параметров диэлектрических подложек на характеристики фотонного кристалла. Показано, что введение нарушения в фотонном кристалле в виде уменьшенного расстояния между

центральными диафрагмами приводит к возникновению в запрещенных зонах пиков пропускания.

Построена модель СВЧ фотонного кристалла на основе резонансных диафрагм, выполненных в виде металлических слоев, нанесенных на диэлектрические подложки.

Обосновано теоретически и подтверждено экспериментально существование примесных мод колебаний на двух частотах в запрещенной зоне фотонного кристалла при изменении тока в n-i-p-i-n-диодной матрице, выполняющей роль нарушения в виде проводящего слоя в фотонном кристалле на резонансных диафрагмах.

Предложен и исследован фотонный кристалл с электрически управляемым с помощью n-i-p-i-n-диодной структурой размером диафрагмы, выполняющей роль нарушения.

Обосновано применение схемы с использованием Y-циркулятора для электрически управляемого модулятора и переключателя СВЧ-сигнала, работающего как прямом, так и в инверсном режимах, с динамическим диапазоном более 40 дБ на основе фотонного кристалла на резонансных диафрагмах.

Достоверность результатов научной квалификационной работы обеспечивается качественным и количественным соответствием выводов теории основным результатам, полученным экспериментально. Достоверность экспериментальных результатов обеспечена применением стандартной измерительной аппаратуры, обработкой экспериментальных данных с использованием стандартных методов.

Практическая значимость полученных результатов заключается в следующем:

Реализован метод измерения параметров диэлектрических структур с использованием резонатора выполненного на основе волноводного фотонного кристалла с неоднородными структурами в виде резонансной диафрагмы.

Исследовано влияние размера щелей диафрагм, расстояние между диафрагмами, диэлектрической проницаемости подложек для диафрагм на амплитудно-частотные характеристики волноводного фотонного кристалла.

Реализован электрически управляемый модулятор и переключатель СВЧ-сигнала с использованием фотонного кристалла на резонансных диафрагмах, работающий как в прямом, так и в инверсном режимах.

Основные положения, выносимые на защиту:

По измеренным частотным зависимостям коэффициентов отражения и прохождения электромагнитного излучения СВЧ-диапазона, взаимодействующего с одномерным волноводным фотонным кристаллом, при наличии в нём нарушения периодичности в виде резонансной диафрагмы, возможно определение параметров диэлектрических структур. При использовании фотонного кристалла с нарушением в виде центральной диафрагмы с n–i–p–i–n-диодной структурой у края щели, управляющий ток сокращает длину щели диафрагмы, вследствие чего смещается резонансная особенностью в запрещенной зоне фотонного кристалла.

При внесении в СВЧ фотонный кристалл на основе резонансных диафрагм n–i–p–i–n-диодной матрицы в виде нарушения периодичности, выполняющей роль проводящего слоя, в запрещенной зоне возникают два пика пропускания. При увеличении тока первый пик около низкочастотного края запрещенной зоны уменьшается, а второй около высокочастотного края запрещенной зоны увеличивается.

Апробация работы:

Основные результаты научной квалификационной работы доложены на:

- Всероссийской научной «Взаимодействие школе-семинаре сверхвысокочастотного, излучения терагерцового И оптического с полупроводниковыми микрометаматериалами И нанострукурами, И биообъектами», Саратов, г. 18-19 мая 2017 г.:
- XIV Международной научно-технической конференции «ФИЗИКА И ТЕХНИЧЕСКИЕ ПРИЛОЖЕНИЯ ВОЛНОВЫХ ПРОЦЕССОВ» 22-24 ноября 2016 г. ПГУТИ, г.Самара

Исследования выполнялись в рамках проекта «Разработка технологии нанокомпозитов на основе диэлектрических формирования матриц с включениями в виде углеродных нанотрубок с управляемыми характеристиками в СВЧ-диапазоне и создание сканирующего зондового ближнеполевого СВЧобеспечивающего локальное микроскопа, измерение СВЧ-характеристик нанокомпозитов» Государственный контракт № 16.740.11.0512 от 16 мая 2011 г. и Дополнению от 07 октября 2011 г. № 1, Дополнению от 15 марта 2013 г. № 2 Федеральная целевая программа «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг., в рамках реализации мероприятия № 1.2.1 Проведение научных исследований научными группами под руководством докторов наук.

Публикации. По материалам научной квалификационной работы опубликовано 3 работы, в том числе 2 статьи в журналах, рекомендованных ВАК; 1 работа опубликована в сборниках конференций.

Личный вклад автора выразился в проведении всего объема экспериментальных работ, в создании теоретических моделей, описывающих результаты экспериментов, проведении компьютерного моделирования и анализе полученных результатов.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность выбранной темы научной квалификационной работы, сформулирована цель работы, приведены

основные положения, выносимые на защиту, описана структура и объем работы.

В первом разделе проведен критический анализ современного состояния исследования фотонных структур.

Во втором разделе представлены исследования резонатора на основе фотонного кристалла с неоднородными структурами в виде резонансной диафрагмы.

На рис. 1 показана модель резонатора, который выполнен на основе волноводного фотонного кристалла с неоднородными структурами в виде резонансной диафрагмы, с прилегающим к ней диэлектриком. На рис. 2а показаны зависимости коэффициента отражения СВЧ-волны на частоте 10,4 ГГц от величины диэлектрической проницаемости исследуемого диэлектрика, а на рис. 2б – от толщины диэлектрика.

Из рис. 2 видно, что, если резонансная частота диафрагмы значительно превышает резонансную частоту фотонного кристалла, то с увеличением диэлектрической проницаемости минимум отражения системы фотонный кристалл-диафрагма уменьшается.

Рис. 1. Модель резонатора, созданная для расчётов в среде HFSS.

Наличие диафрагмы, обеспечивающей с одной стороны уменьшение апертуры волновода, что приводит к повышению локальности измерений, а с другой стороны увеличивает добротность резонанса системы фотонный кристалл – диафрагма. Это приводит к существенному увеличению чувствительности исследуемой системы и подтверждает теоретически предсказанную возможность её использование для более точного измерения электрофизических параметров материалов рис. 3

Рис. 3. показана частотная зависимость коэффициента отражения: 1-отдельно диафрагма; 2-фотонный кристалл с нарушением без диафрагмы; 3- фотонный кристалл вместе с диафрагмой. Слева ширина щели *a*'=14 *мм*;. справа – *a*'=14 *мм*

В третьем разделе приведены основные результаты исследования фотонных кристаллов на основе резонансных диафрагм.

Исследуемая структура состоит из периодически расположенных металлических резонансных диафрагм на расстоянии *l* друг от друга, нанесенных на диэлектрическую подложку (рис. 4).

Рис. 4. Схема СВЧ фотонного кристалла, где *l* – расстояние между диафрагмами

На основе численного моделирования с использованием метода конечных элементов в программе Ansoft HFSS исследовалось влияние подложек с различной диэлектрической проницаемостью на коэффициенты отражения и прохождения СВЧ волны для структуры.

Из полученных результатов следует, что амплитудно-частотная характеристика коэффициента пропускания исследуемой структуры имеет «зонный» характер. Амплитудно-частотные характеристики (АЧХ) такого фотонного кристалла состоит ИЗ характерных чередующихся «разрешенных» и «запрещенных» зон. Причем, резонансы отдельных диафрагм могут находиться за пределами исследуемой частотной области, так как резонансные пики пропускания в фотонном кристалле образуются за счет формирования стоячих волн в промежутках между диафрагмами, а изменение параметров диафрагм (ширина и высота щели) позволяют сдвигать «разрешенную» и «запрещенную» зоны в нужный частотный диапазон.

Проанализированы АЧХ фотонного кристалла, составленного из металлических диафрагм, нанесенных на диэлектрическую подложку со сквозной щелью (рис. 5, *a*), при различной ширине щели *a* и АЧХ фотонного кристалла из диафрагм на диэлектрических подложках со щелями, заполненными материалом с диэлектрической проницаемостью ε_2 (рис.5, *б*).

Рис. 5. Металлическая диафрагма 1 на подложке 2 из диэлектрика с ε₁: *a*) – со сквозной щелью;

б) – со щелью заполненной диэлектриком 3 с диэлектрической проницаемостью ε_2

В результате численного моделирования были получены частотные зависимости коэффициентов прохождения *D*, приведенные на рис.6.

Рис. 6. Частотные зависимости |D|² для фотонного кристалла из диафрагм на подложках с ε₁=4.15, высотой щели b₁ = 2 мм, толщиной диэлектрика d = 1 мм: *a*) со сквозной щелью различной ширины a₁, мм: 1 –10; 2 –11; 3 – 12; 4 –13; 5 –14.
б) с щелью шириной a₁ = 10 мм, заполненной диэлектриком с различной величиной диэлектрической проницаемости ε₂ (рис.116): 1 – ε₂ = 1; 2 – ε₂ = 2; 3 – ε₂ = 3; 4 – ε₂ = 4; 5 – ε₂ = 5

Можно заметить, что с увеличением ширины щели а, при фиксированной диэлектрической проницаемости подложки (рис.3, а), ширина глубина запрещенной Причем, увеличивается И зоны. низкочастотный край зоны остается неподвижным в районе 9 ГГц, а расширение происходит за счет смещения высокочастотного края запрещенной зоны в высокочастотную область. Такая же тенденция наблюдается, при увеличении диэлектрической проницаемости диэлектрика внутри щели (рис. 6, δ).

Схожесть поведения амплитудно-частотных характеристик фотонного кристалла при изменении диэлектрика внутри щели и при изменении ширины щели связано с тем, что с увеличением

диэлектрической проницаемости материала внутри щели на фиксированной частоте уменьшается длина волны в нем, что эквивалентно увеличению линейных размеров щели.

В четвертом разделе представлены волноводные фотонные кристаллы на резонансных диафрагмах с управляемыми n-i-p-i-n-диодами характеристиками рис. 7.

Рис. 7. Конструкция фотонного кристалла на основе диафрагм: a) С n–i–p–i–n-диодной матрицей в среднем слое; б) С n–i–p–i–n-структурой у края центральной щели.

Результаты расчетов амплитудно-частотных характеристик фотонного кристалла представлены на рис. 8, *а* и 8, *б*.

Рис. 8. Частотные зависимости коэффициента отражения фотонного кристалла а) и прохождения б), 1 – фотонный кристалла без нарушений из 7 диафрагм без n-i-p-i-n-матрицы, 2–8 – фотонный кристалл с управляющей n-i-p-i-n-матрицей в качестве нарушения центрального слоя при различной удельной электропроводности *i*-слоя n-i-p-i-n-структуры σ , См/м: 2–0, 3–0.4, 4–2.0, 5–10.0, 6–100.0, 7–1000.0, 8–10000.0

Как следует из результатов расчета фотонный кристалл без нарушений, созданный на основе резонансных диафрагм, характеризуется наличием запрещенной зоны в диапазоне частот 8.53–10.23 ГГц (кривые *1* на рис. 8, *a*, *б*). Введение в фотонный кристалл *n*–*i*–*p*–*i*–*n*-матрицы в качестве

нарушения центрального слоя приводит к возникновению примесной моды колебаний в запрещённой зоне фотонного кристалла на частоте $f_{1\text{reop}}=8.91 \ \Gamma \Gamma \mu$. Изменение величины удельной электропроводности *i*-слоя n-i-p-i-n-структуры от 0 до $10^4 \ \text{См/м}$ приводит к монотонному уменьшению коэффициента прохождения на частоте примесной моды колебаний от $-0.65 \ \text{дБ}$ до $-40.6 \ \text{дБ}$. При этом в изменении коэффициента отражения наблюдается особенность: при увеличение удельной электропроводности *i*-слоя в диапазоне от 0 до $0.4 \ \text{См/м}$ коэффициент отражения уменьшается от $-11.3 \ \text{дБ}$ до $-47.5 \ \text{дБ}$, а в диапазоне от $0.4 \ \text{до}$ $10^4 \ \text{См/м}$ монотонно увеличивается до $-0.3 \ \text{дБ}$.

Увеличение удельной электропроводности *i*-слоя *n*-*i*-*p*-*i*-*n*-структуры до значений больших 20.0 См/м приводит к возникновению примесной моды колебаний на частоте f_{2reop} =9.47 ГГц, отличной от f_{1reop} . При этом на частоте $f_{2\text{теор}}$ с увеличением удельной электропроводности *i*-слоя в диапазоне от 0.0 См/м до 270.0 См/м коэффициент отражения уменьшается -0.1 дБ -30.66 дБ. Дальнейшее ОТ ДО увеличение удельной электропроводности приводит к монотонному росту коэффициента отражения на частоте f_{2теор} (кривая 8 на рис. 8, *a*). В то же время коэффициент прохождения на частоте f_{2теор} при изменении удельной электропроводности *i*-слоя в диапазоне от 0.0 См/м до 20.0 См/м остаётся достаточно низким около -17.0 дБ, и достигает -21.0 дБ при $\sigma = 10^4$ См/м.

Частотные зависимости коэффициента отражения фотонного кристалла демонстрируют высокую чувствительность к величине удельной электропроводности *i*-слоя n-i-p-i-n-структуры. При этом на частотах $f_{1\text{теор}}$ и $f_{2\text{теор}}$ могут быть получены как монотонно возрастающие или монотонно убывающие, так и немонотонные зависимости коэффициента отражения от величины удельной электропроводности *i*-слоя выбором диапазона её изменения (см. рис. 9).

Рис. 9 Зависимости коэффициента отражения от величины удельной электропроводности *i*-слоя *n*–*i*–*p*–*i*–*n*-структуры на частотах примесных мод колебаний фотонного кристалла *f*_{1теор} и *f*_{2теор}, ГГц: *I* – 8.91; *2* – 9.47

Физическая причина исчезновения примесной моды колебаний на частоте $f_{1\text{теор}}$ при увеличении удельной электропроводности *i*-слоя n-i-p-i-i*п*-структуры до определенной величины и возникновение примесной моды колебаний на другой частоте f_{2теор} может быть обусловлена эффектом изменения типа резонансного отражения электромагнитного излучения от слоистых структур с проводящими слоями. В описанном выше фотонном кристалле на резонансных диафрагмах роль проводящего слоя играет *n*-*i*p-i-n-матрица. При малой толщине И низкой удельной электропроводности проводящего слоя в таких структурах на частоте f_{1 reop, соответствующей минимуму коэффициента отражения, реализуется такое распределение электрического поля в стоячей СВЧ-волне, при котором на границе слоя образуется пучность электрического поля электромагнитной волны, а при больших толщинах и высокой удельной электропроводности проводящего слоя на частоте $f_{2\text{теор}}$, отличной от частоты $f_{1\text{теор}}$ и минимуму коэффициента отражения, соответствующей на границе проводящего слоя образуется узел электрического поля электромагнитной волны.

На рис. 10 а) и 10 б) представлены частотные зависимости коэффициентов отражения и прохождении СВЧ-излучения при различных значениях проводимости *n*–*i*–*p*–*i*–*n*-диода для фотонного кристалла, состоящего из 7-ми диафрагм.

Рис. 10 Экспериментальные АЧХ коэффициентов прохождения (*a*) и отражения (б) фотонного кристалла на резонансных диафрагмах без нарушения (кривые 1 с диафрагмами размерами *a*=20 мм , *b*=2 мм и постоянным расстоянием *L*=20 мм) и с электрически управляемым размером щели (*a*=15 мм, *b*=0.3 мм) центральной диафрагмы, выполняющей роль нарушения (кривые 2-4) при различных значениях протекающего через *n*–*i*–*p*–*i*–*n*-структуру прямого тока *I*, мА: 2 – 0.0, 3 – 4.0 мА, 4 – 550 мА

Как следует из результатов эксперимента, сдвиг частоты резонансной особенности составлял 200 МГц.

На фиксированной частоте при переключении *n–i–p–i–n-*диода из высокоомного состояния в проводящее происходит изменение величины коэффициентов отражения и прохождении СВЧ-излучения.

В заключении приведены основные результаты и сформулированы выводы научной квалификационной работы.

ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ

Разработана 1. И экспериментально реализована конструкция резонатора на основе фотонного кристалла с резонансной диафрагмой. Показана возможность усиления резонансных особенностей АЧХ фотонного кристалла с помощью диафрагмы; показана возможность использования СВЧ резонатора в виде фотонного кристалла с резонансной параметров диафрагмой для измерения материалов с высокой достигнута чувствительность коэффициента чувствительностью; отражения к изменению диэлектрической проницаемости исследуемого образца, равная 100 дБ/є..

2. На основе численного моделирования с использованием метода конечных элементов в САПР Ansoft HFSS выполнен расчет амплитудночастотных характеристик СВЧ фотонных кристаллов на основе

резонансных диафрагм. Проведен анализ влияния параметров диэлектрических подложек на характеристики фотонного кристалла. Показано, что введение нарушения в фотонном кристалле в виде уменьшенного расстояния между центральными диафрагмами приводит к возникновению в запрещенных зонах пиков пропускания.

3. Построена модель СВЧ фотонного кристалла на основе резонансных диафрагм, выполненных в виде металлических слоев, нанесенных на диэлектрические подложки.

4. С использованием программы ANSYS HFSS трехмерного моделирования электромагнитных полей методом конечных элементов выполнен расчет амплитудно-частотных характеристик СВЧ фотонных кристаллов на основе резонансных диафрагм с нарушением периодичности в виде *n*–*i*–*p*–*i*–*n*-диодной матрицы с управляемыми электрическим полем характеристиками.

5. Обосновано теоретически и подтверждено экспериментально существование примесных мод колебаний на двух частотах в запрещенной зоне фотонного кристалла при изменении тока в n-i-p-i-n-диодной матрице, выполняющей роль нарушения в виде проводящего слоя в фотонном кристалле на резонансных диафрагмах.

6. Предложен и исследован фотонный кристалл с электрически управляемым с помощью *n*–*i*–*p*–*i*–*n*-диодной структурой размером диафрагмы, выполняющей роль нарушения.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ НАУЧНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ ИЗЛОЖЕНЫ В СЛЕДУЮЩИХ ПУБЛИКАЦИЯХ:

В изданиях, рекомендованных ВАК Минобрнауки РФ

- 1. Усанов Д.А., Скрипаль А.В., Мерданов М.К., Евтеев С.Г. Волноводные фотонные структуры на резонансных диафрагмах// Радиотехника. 2015. № 10. С. 108–113.
- 2. . Усанов Д.А,. Скрипаль А.В,. Мерданов М.К, . Пономарев Д.В,. Евтеев С.Г СВЧ фотонные кристаллы – новый тип функциональных структур, применяемых в радиоэлектронике// Физика волновых процессов и радиотехнические системы. 2016. том 19. №3. С. 17–24
- 3. Всероссийская научная школа-семинар «Взаимодействие сверхвысокочастотного, терагерцового и оптического излучения с полупроводниковыми микро- и нанострукурами, метаматериалами и биообъектами», г. Саратов, 18–19 мая 2017 г.

ЦИТИРУЕМАЯ ЛИТЕРАТУРА

4. Kuriazidou C.A., Contopanagos H.F., Alexopolos N.G. // IEEE Trans. 2001. V. MTT-49, № 2. P. 297.

- 5. Беляев Б.А., Волошин А.С., Шабанов В.Ф. Исследование микрополосковых моделей полосно-пропускающих фильтров на одномерных фотонных кристаллах// Доклады Академии Наук. 2005. Т. 400, № 2. С. 181.
- 6. А.В., Абрамов А.В. и др. // ЖТФ. 2010. Т. 80, № 8 С. 143
- 7. Силин Р.А., Сазонов В.П. Замедляющие системы. М.: Сов. радио, 1966, 631с.
- 8. Cohn S. B. Direct-coupled-resonator filters. Proc. IRE. 1957. Vol. 45. Feb. pp. 187–196.
- 9. Sung-Il Kim, Mi-Young Jang, Chul-Sik Kee et al. // Current Applied Physics. 2005. № 5. P. 619.
- 10. Chul-Sik Kee, Mi-Young Jang, Sung-Il Kim. et al. // Applied Physics Letters. 2005. V. 86, P. 181109.
- 11. Мухортов В.М., Масычев С.И., Тимошенко П.Е. // Вестник Южного научного центра. 2016. Т. 12. № 3. С.11.
- Беляев Б. А., Волошин А.С., Шабанов В.Ф. // Доклады Академии Наук. 2005. Т. 403. № 3. С. 319.
- Гуняков В.А., Герасимов В.П., Мысливец С.А. и др. Термооптическое переключение в одномерном фотонном кристалле// ПЖТФ. 2006. Т. 32, вып. 21. С. 76–83
- Усанов Д. А., Скрипаль А. В., Абрамов А. В., Боголюбов А. С., Скворцов В. С., Мерданов М. К. Волноводные фотонные кристаллы с характеристиками, управляемыми p-i-n-диодами// Известия вузов. Электроника. 2010. №1. С. 24–29.