Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО» Балашовский институт (филиал)

Кафедра физики и информационных технологий

АНАЛИЗ КОНЦЕНТРАЦИИ САХАРА В ВОДНЫХ РАСТВОРАХ ЛЕЧЕБНЫХ БАЛЬЗАМОВ ПРИ ПОМОЩИ ЛАБОРАТОРНОГО САХАРИМЕТРА «СУ-3»

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 143 группы направления 12.03.04 «Биотехнические системы и технологии», профиля «Биомедицинская инженерия», факультета математики, экономики и информатики Джавояна Ашота Эдвардовича

Научный руководитель		
доцент кафедры ФиИТ,		
кандидат технических наук,		
доцент		Н.Д. Гаврилов
	(подпись, дата)	
Зав. кафедрой ФиИТ.		
кандидат педагогических наук,		
доцент		Е.В.Сухорукова
	(подпись, дата)	

ВВЕДЕНИЕ

Известно, что раствор - это смесь, состоящая из частиц растворенного вещества, растворителя и продуктов реакции.

Одним из важных его физических свойств является концентрация растворенных в жидкости различных веществ.

Сложным раствором называется смесь, состоящая из двух и более компонентов.

Растворимость газов в жидкостях зависит от природного газа, жидкого, газообразного давления. Процесс растворения газа в жидкости называется адсорбцией. Жесткие законы, описывающие зависимость растворимости газа не доступны в природе. Газы, имеющие полярную молекулу, лучше растворяются в полярных растворителях, а неполярные в неполярных.

Легко сжимаемые в чистом состоянии газы, обладающие более высокой критической температурой являются более растворимыми.

Если над жидкостью находится смесь газов, то каждый компонент растворяется в зависимости от его парциального давления. Отношение концентраций в растворе всегда отличается от отношений концентраций в газовой фазе.

Растворимость также зависит от присутствия в жидкости других растворенных веществ.

Зная концентрацию растворенных в жидкости веществ можно спрогнозировать поведение смеси при взаимодействии с живым организмом.

Этим обосновывается **актуальность** темы выпускной квалификационной работы «Анализ концентрации сахара в водных растворах лечебных бальзамов при помощи лабораторного сахариметра СУ-3»

Объектом исследований являются сложные растворы, представляющие смесь двух и более компонентов, а **предметом** –

качественное определение массовой концентрации растворенных в них веществ.

Цель работы: определение массовой концентрации сахара в водных растворах лечебных бальзамов.

Задачи исследования:

- 1. Рассмотреть сведения из теории растворов, изучающей вопросы растворимости газов и твердых тел в жидкостях, учитывающие различные свойства наиболее изученных растворов.
- 2. Изучить методы анализа концентрации различных веществ в жидких растворах, включающие в себя методы, основанные на измерении свойств растворителя, одновременном учете свойств компонентов раствора и на измерении свойства образующегося соединения.
- 3. Найти функции влияния дольной концентрации водных растворов бальзамов на угол поворота плоскости поляризации, и массовую концентрацию принятых к исследованию водных растворов лечебных бальзамов.

При работе над ВКР использовались следующие методы исследования: теоретический (сравнительный анализ), моделирование и эмпирический (эксперимент).

Работа состоит из введения, трех глав, выводов по каждой главе, заключения и списка литературы, общим объемом 60 страниц.

При работе над ВКР использовались следующие методы исследования: теоретический (сравнительный анализ), моделирование и эмпирический (математико-статистический).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе рассматриваются краткие сведения из теории растворов, изучающей вопросы растворимости газов и твердых тел в жидкостях, учитывающие различные свойства наиболее изученных растворов. Определяется, что растворы — это однородная многокомпонентная система, состоящая из растворителя, растворённых веществ и продуктов их взаимодействия, относительные количества которых могут изменяться в широких пределах.

Вторая глава посвящена изучению методов анализа концентрации различных веществ в жидких растворах, включающих в себя методы, основанные на измерении свойств растворителя, одновременном учете свойств компонентов раствора и на измерении свойства образующегося соединения. Устанавливается, что эта группа методов применима к тем системам, в которых образуются соединения, обладающие свойством, отсутствующим у растворителя. Характерными примерами таких свойств являются оптическая плотность, электрическая проводимость, теплота смешения.

В третьей главе приводится обоснование исходных данных к проведению опыта по исследованию производилось вычисление величины удельного вращения раствора сахара.

Перед опытом сахариметр настраивался, и проводилась регулировка с целью установки его на ноль. Для установки прибора на ноль (нулевой угол ϕ_0 =0) использовался специальный механизм установки нониуса с помощью

юстировочного ключа. Если нулевой угол ϕ_0 не равен 0 необходимо это учитывать при измерении угла поворота плоскости поляризации света [7].

В нашем случае угол ϕ_0 составил значение $\phi_0 = 1,7^{\circ}$.

В кювету устанавливалась трубка известной длины l = 95 мм с водным раствором сахара рекомендуемой концентрации ($C = 280 \kappa c / M^3$) и вращением анализатора добивались (при его чувствительном положении) равенства яркостей частей поля зрения. При этом измерялся угол вращения плоскости поляризации раствором.

В нашем случае он составил значение $\varphi_1 = 17.8^{\circ}$.

Вычислялся угол поворота плоскости поляризации

$$\varphi = \varphi_1 - \varphi_0 \tag{6}$$

В нашем случае он составил значение $\varphi = 16,1^{\circ}$.

Далее по формуле $[\alpha] = \frac{\varphi}{Cl}$ вычислялась величина удельного вращения раствора сахара, которая в рассматриваемом случае составила значение $[\alpha] = 0.67 \frac{epa\partial \cdot m^2}{\kappa e} \, .$

Таблица 2 – Вычисление величины удельного вращения раствора сахара

№ опыта	$arphi_0^{0}$	\overline{arphi}_0^{0}	$arphi_1^0$	$\overline{oldsymbol{arphi}}_1^{0}$	φ	C , $\kappa \varepsilon / M^3$	$[\alpha_0]. \frac{\operatorname{rpad} \cdot \operatorname{m}^2}{\operatorname{\kappa} \operatorname{c}}$
1	1,7		18,0				
2	1,67	1,7	18,1	17,8	16,1	280	0,67
3	1,72		17,5				

В плане выполнения исследования опыт проводился с тремя различными по физическому составу жидкостями – растворами в воде бальзамов «Караваева», «Биттнера» и «Алтайские травы».

Используя исходные данные и придерживаясь методики, опыт проводился со всеми тремя жидкими растворами в следующей последовательности [7].

Для исследований концентрации в воде рассматриваемого бальзама были взяты его дольные значения концентрации от целой доли растворителя (табл. 3).

Расчет концентрации проводился в следующей последовательности.

В трубку принятой длины (l = 95 мм) наливался водный раствор бальзама в соответствии с принятыми дольными значениями концентрации (m/M=0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8) от целой части растворителя.

По лимбу и нониусу заново производился отсчет положения анализатора, который составил ряд значений угла (φ_2) поворота плоскости анализатора.

Используя выражение $\varphi = \varphi_2 - \varphi_0$, вычислялся угол поворота плоскости поляризации водного раствора бальзама исследуемой концентрации.

Для вычислений искомой концентрации в исследуемом растворе использовалась формула.

$$C_{HEH3B} = \frac{\varphi}{[\alpha] \cdot l} \tag{7}$$

Вычисления повторялись семь раз для каждого дольного значения концентрации.

Результаты расчета угла поворота плоскости поляризации и концентрации водного раствора бальзама «Караваева» сведены в таблицу 3.

Таблица 3 – Расчет угла поворота плоскости поляризатора и концентрации бальзама «Караваева» в растворителе

m/M	0,2	0,3	0,4	0,5	0,6	0,7	0,8		
$arphi_2$	16	18	21	23	28	31	35		
	$arphi=arphi_2-arphi_0$								
φ	14,3	16,3	19,3	21,3	26,3	29,3	33,3		
$C_{HEII3B} = \frac{\varphi}{[\alpha] \cdot l}$									
$C_{{\it HEU3B}}$	251,375	282,786	329,929	361,351	439,906	487,038	549,872		

Дальнейшим этапом явилось получение функций, описывающих поведение угла поворота плоскости поляризации и концентрации водного раствора бальзама «Караваева» в зависимости от дольных значений его концентрации.

К исследованию были взяты три функции.

В качестве таких функций строились следующие статистические модели: квадратичная, экспоненциальная и степенная, которые в общем случае имеют вид:

$$Y = a_0 + a_1 \cdot X + a_2 \cdot X^2 -$$
квадратичная,

$$Y = a_0 \cdot e^{a_1 x}$$
 – экспоненциальная,

$$Y = a_0 \cdot X^{a_1}$$
 – степенная,

В этих моделях $a_0, a_1, a_2,$ — искомые постоянные коэффициенты, Y — исследуемая величина (угол поворота плоскости поляризации и массовая концентрация водного раствора), а X — влияющий параметр (в нашем случае — дольные значения концентрации раствора).

После проведения расчета коэффициентов моделей, искомые функции были найдены в виде.

Для угла поворота:

$$Y = 9,0857 + 7,2619 \cdot X + 20,238 \cdot X^2 -$$
квадратичная функция,

$$Y = 8,367 \cdot e^{1,5054 \cdot X}$$
 – экспоненциальная функция,

$$Y = 29,557 \cdot X^{0,6497}$$
 — степенная функция.

Для массовой концентрации водного раствора:

$$Y = 142,74 + 114,09 \cdot X + 317,96 \cdot X^2$$
 – квадратичная функция,

$$Y = 131,46 \cdot e^{1,5054 \cdot X}$$
 – экспоненциальная функция,

$$Y = 464,37 \cdot X^{0,6466}$$
 — степенная функция.

Для определения, какая именно из полученных моделей наилучшим образом описывает изменение исследуемых величин, был проведен расчет по

этим моделям значений углов поворота плоскости поляризации и концентрации водного раствора бальзама в зависимости от дольных значений концентрации раствора.

Результаты расчета сведены в таблицы 4 и 5.

Таблица 4 – Расчет критерия Пирсона для функций, описывающих изменение углов плоскости поляризации

№ пп	X	Y	Y_1	Y_2	<i>Y</i> ₃	$\frac{\left[Y-Y_1\right]^2}{Y_1}$	$\frac{\left[Y-Y_2\right]^2}{Y_2}$	$\frac{\left[Y-Y_3\right]^2}{Y_3}$
1	0,2	11,3	11,348	11,306	10,440	0,000	0,000	0,065
2	0,3	13,3	13,086	13,143	13,570	0,003	0,002	0,005
3	0,4	15,3	15,229	15,279	16,344	0,000	0,000	0,071
4	0,5	17,3	17,776	17,761	18,881	0,013	0,012	0,144
5	0,6	20,3	20,729	20,646	21,243	0,009	0,006	0,044
6	0,7	25,3	24,086	24,001	23,469	0,058	0,067	0,132
7	0,8	27,3	27,848	27,900	25,586	0,011	0,013	0,108
Σ						0,095	0,100	0,570

Таблица 5 – Расчет критерия Пирсона для функций, описывающих изменение концентрации водного раствора бальзама

№ пп	X	Y	Y_1	<i>Y</i> ₂	<i>Y</i> ₃	$\frac{\left[Y-Y_1\right]}{Y_1}$	$\frac{[Y-Y_2]}{Y_2}$	$\frac{\left[Y-Y_3\right]^2}{Y_3}$
1	0,2	177,533	178,276	178,996	164,025	0,003	0,012	1,028
2	0,3	208,955	205,583	208,075	213,192	0,054	0,004	0,086
3	0,4	240,377	239,250	241,880	256,777	0,005	0,009	1,119
4	0,5	271,799	279,275	281,176	296,632	0,206	0,324	2,269
5	0,6	318,932	325,660	326,856	333,747	0,142	0,197	0,688
6	0,7	397,486	378,403	379,958	368,727	0,916	0,773	2,081
7	0,8	428,908	437,506	441,687	401,978	0,172	0,381	1,691
Σ						1,499	1,699	8,961

По таблице критических точек распределения χ^2 [1] по уровню значимости $\alpha=0.05$ и числу степеней свободы k=n-3=14-3=11 находим критическую точку правосторонней критической области $\chi^2_{KP}=9.45$

В нашем случае все функции хорошо описывают поведение исследуемой величины кроме экспоненциальной модели, однако для квадратичных функций значения критериев Пирсона наименьшие $\chi^2 = 0,095$ и $\chi^2 = 1,449$, а это означает, что эти модели описывают поведение углов поворота плоскости поляризации и концентрации водного раствора бальзама наилучшим образом.

Графические иллюстрации изменения углов поворота плоскости поляризации и концентрации водного раствора бальзама «Караваева», в зависимости от дольных значений раствора приведены на рисунках 2-7.

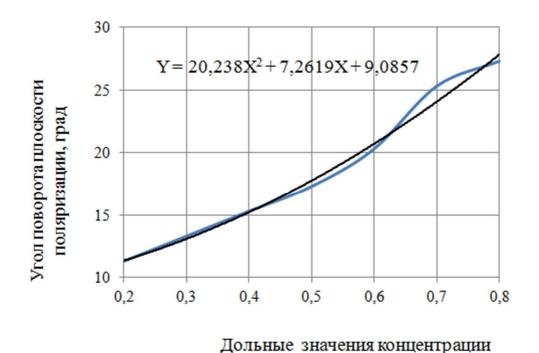
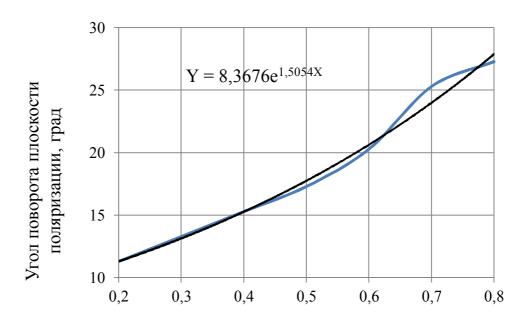
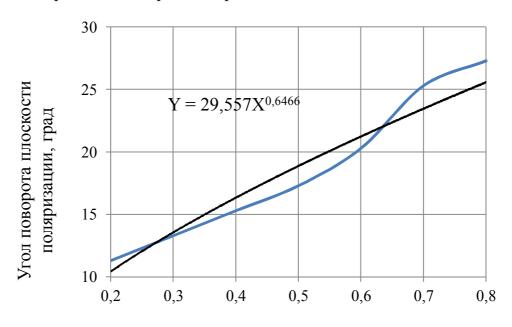




Рисунок 2 — Влияние дольной концентрации на угол поворота плоскости поляризации, аппроксимированное квадратичной моделью

Дольные значения концентрации

Рисунок 3 — Влияние дольной концентрации на угол поворота плоскости поляризации, аппроксимированное экспоненциальной моделью

Дольные значения концентрации

Рисунок 4 — Влияние дольной концентрации на угол поворота плоскости поляризации, аппроксимированное степенной моделью

По аналогии были найдены функции описывающие влияние дольной концентрации на угол поворота плоскости поляризации и концентрацию водных растворов бальзамов «Биттнера» и «Алтайские травы», приведенные в приложении А.

Результаты расчета по этим моделям значений углов поворота плоскости поляризации и концентрации растворов исследуемых бальзамов сведены в таблицы 6 – 9 приложения Б.

Как видно из таблиц, для оставшихся двух растворов — бальзамов «Биттнера» и «Алтайские травы» самые низкие значения критериев Пирсона соответствуют квадратичным моделям, а это означает, что они являются наиболее адекватными по сравнению с экспоненциальными и степенными функциями.

Проведен опыт и найдены функции влияния дольной концентрации растворов бальзамов на угол поворота плоскости поляризации, и массовую концентрацию в принятых к исследованию водных растворов лечебных бальзамов. Вычислен разброс значений **УГЛОВ** поворота плоскости поляризации и массовой концентрации в исследуемых растворах бальзамов, позволяющий установить, что ЭТИ значения достаточно низкие, теоретические функции хорошо согласуются с опытными данными

ЗАКЛЮЧЕНИЕ

В работе достигнута поставленная цель – проведение опыта по качественному анализу при определении массовой концентрации водных растворов лечебных бальзамов.

Выполнены следующие задачи:

- 1. Рассмотрены сведения из теории растворов, изучающей вопросы растворимости газов и твердых тел в жидкостях, учитывающие различные свойства наиболее изученных растворов.
- 2. Изучены методы анализа концентрации различных веществ в жидких растворах, включающие в себя методы, основанные на измерении свойств растворителя, одновременном учете свойств компонентов раствора и на измерении свойства образующегося соединения.
- 3. Найдены функции влияния дольной концентрации водных растворов бальзамов на угол поворота плоскости поляризации, и массовую концентрацию принятых к исследованию водных растворов лечебных бальзамов.

Данная ВКР будет полезна преподавателям и студентам, обучающимся по направлению «Биотехнические системы и технологии», медицинским работникам, реализующим свою деятельность в области анализа жидких лечебных сред.