Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра нефтехимии и техногенной безопасности

Превращение синтез-газа на медных, железных, никелевых катализаторах

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента <u>4</u> курса <u>431 г</u>	руппы	
<u> </u>	«Химическая техноло пенование направления, спени Института химии	•
Погој	релова Александра Ан	дреевича
Научный руководитель		
к.х.н., профессор должность, уч. ст., уч. зв.	подпись, дата	<u>Бурухина О.В.</u> инициалы, фамилия
Заведующий кафедрой		
д.х.н., профессор должность, уч. ст., уч. зв.	подпись, дата	<u>Р.И. Кузьмина</u> инициалы, фамилия

Саратов, 2017

Одним из процессов получения искусственных жидких топлив и ценных химических соединений на основе не нефтяного сырья (уголь, природный газ, биомасса) является синтез углеводородов из СО и Н₂, при участии катализаторов, содержащих переходные металлы VIII группы Известный как синтез Фишера-Тропша. Хотя существуют и другие способы получения углеводородных смесей из не нефтяного сырья (например, гидрирование биомассы или угля, полукоксование и пиролиз углей), преобладающее развитие процесса Фишера-Тропша ярко подтверждает его жизнеспособность и перспективы, что определяется огромной ресурсной базой разведанных запасов угля в энергетическом плане на порядок выше нефти.

Перспективы развития этого процесса становятся более благоприятными, если мы сосредоточимся на получении от СО и H_2 не только жидкого топлива, но и сырья для нефтехимической промышленности: этилена, пропилена, бутилена, α -олефинов, ароматических углеводородов, кислородсодержащих соединений,

В настоящее время большое внимание уделяется внедрению селективного синтеза Фишера-Тропша, а именно синтезу алканов $C_{11} \neg C_{18}$, изоалканов $C_5 \neg C_{10}$, твердых парафинов. Поэтому одной из основных задач развития синтеза Фишера-Тропша является разработка катализаторов, обладающих не только высокой стабильностью и активностью, но также высокой селективностью в образовании определенных углеводородных продуктов.

<u>Целью работы являлось</u> исследование процесса превращения синтез-газа на (3%)CuO/Al₂O₃; (3%)Fe₂O₃/Al₂O₃ и (3%)CuO(3%)Fe₂O₃/Al₂O₃ катализаторах при атмосферном давлении для получения органических веществ.

Бакалаврская работа Погорелова Александра Андреевича «Превращение синтез-газа на медных, железных, никелевых катализаторах» представлена на 49 страницах и состоит из трех глав:

Глава 1 – Литературный обзор. Процесс Фишера ¬ Тропша

Глава 2 – ЭКСПЕРИМЕНАЛЬНАЯ ЧАСТЬ

Глава 3 – ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Основное содержание работы. В первой главе бакалаврской работы выполнен обзор научной литературы по способам получения синтез-газа.

Газификация угля. Эта реакция является эндотермической, равновесие сдвигается вправо при температурах 900–1000°С. Разработаны технологические процессы, использующие парокислородное дутье, при котором наряду с упомянутой реакцией протекает экзотермическая реакция сгорания угля, обеспечивающая нужный тепловой баланс: $C + 1/2O_2$ CO. При газификации угля соотношение CO : H_2 близко к 1 : 1.

Конверсии метана. Основными современными методами получения синтез-газа из метана являются следующие:

- 1. Паровая конверсия: $CH_4 + H_2O = CO + 3 H_2 226 кДж/моль$
- 2. Углекислотная конверсия: $CH_4 + CO_2 = 2CO + 2 H_2 264$ кДж/моль
- 3. Парциальное окисление: $CH_4 + 1/2O_2 = CO + 2 H_2 + 44$ кДж/моль

Синтез углеводородов из СО и Н₂ (синтез Фишера — Тропша) каталитический процесс, протекающий сложный на гетерогенных катализаторах, содержащих металлы VIII группы (железо, кобальт, никель или включающий сложную совокупность рутений), последовательных и Основными параллельных превращений. являются реакции гидрополимеризации СО с образованием парафинов и олефинов:

$$nCO + (2n + 1)H_2 \rightarrow C_nH_{2n+2} + nH_2O,$$

$$nCO + 2nH_2 \rightarrow C_nH_{2n} + nH_2O.$$

Процесс получения углеводородов из синтез-газа (CO и H_2) сопровождается большим количеством побочных реакций, основными из которых являются: — реакция равновесия водяного газа CO + $H_2O \leftrightarrow CO_2 + H_2$,

— прямое гидрирование СО:

$$CO + 3H_2 \rightleftarrows CH_4 + H_2O$$
,
 $2CO + 2H_2 \rightleftarrows CH_4 + CO_2$.

Согласно литературным данным, из термодинамических расчетов следует следующее:

- 1) возможно образование углеводородов любой молекулярной массы, вида и строения, кроме ацетилена;
- 2) вероятность образования углеводородов из СО и водорода уменьшается в ряду: метан > другие алканы >> алкены. Вероятность образования нормальных алканов уменьшается, а нормальных алкенов повышается с увеличением длины цепи;
- 3) повышение общего давления в системе способствует образованию более тяжелых продуктов, а увеличение парциального давления водорода в синтез-газе благоприятствует образованию алканов.

Однако следует отметить, что реальный состав продуктов, получаемых по методу Фишера — Тропша, отличается от термодинамически равновесного, так как синтез углеводородов из СО и H_2 является кинетически контролируемым процессом. На состав продуктов оказывает влияние как природа используемого катализатора, так и условия синтеза.

Выбор активного металла для синтеза Фишера — Тропша зависит от ряда параметров, например от источника сырья, цены активного металла и набора желательных продуктов.

Никелевые катализаторы активны преимущественно в реакции метанообразования и образуют большое количество летучих карбонилов (соединений с моно- оксидом углерода).

Рутениевые катализаторы характеризуются высокой способностью к полимеризации и активностью при низких (до 100°С) температурах. Сообщалось также, что высокомолекулярные парафины (полиметилены) могут быть получены в их присутствии, но требуемое для этого рабочее давление составляет 10-20 МПа. При низких давлениях основным продуктом синтеза

является метан. Позднее было обнаружено, что типичное распределение продуктов синтеза Фишера-Тропша может быть получено в присутствии рутениевого катализатора (как примененного, так и не нанесенного) в более мягких условиях $(0,1-0,2 \text{ M}\Pi a, t=200\div250 \text{ °C})$.

Катализаторы железа проявляют высокую активность в диапазоне температур 200-350 ° С при давлении 2-3 МПа. Как правило, железные катализаторы позволяют синтезировать смеси с большим содержанием олефинов, разветвленных парафинов и кислородсодержащих соединений. Таким образом, гидрирующая функция кобальтовых катализаторов выше, чем у железа, в их глазах образуются главным образом парафины линейной структуры. В таблице2приведены некоторые характеристики активных металлов, которые могут быть использованы в качестве катализатора синтеза Фишера-Тропша.

Приведены данные о составах катализаторов гидроочистки. Современные промышленные катализаторы Фишера – Тропша – это катализаторы, содержащих металлы VIII группы (Fe, Co, Ni или Ru)

Сочетание всех компонентов, позволяет сделать катализатор наиболее эффективным в процессе Фишера – Тропша.

Описаны основные способы нанесения активных компонентов на носитель при приготовлении катализаторов Фишера – Тропша.

Приведены данные об образовании углеводородов на промышленных катализаторах

Рассмотрены основные параметры процесса. Показаны зависимости степени конверсии метана от различных параметров процесса: температура, давление, объемная скорость подачи сырья.

Кроме того, температура синтеза в присутствии железных катализаторов обычно выше (240-350 ° C), чем в присутствии кобальта (200-260 ° C). При температурах выше 250 ° C активно протекают реакции водяного газа и диспропорционирования СО. В результате реакции водяного газа образуется дополнительное количество водорода, поэтому при синтезе в присутствии катализаторов на основе железа отношение H₂: СО в среднем несколько ниже (не более 1,8), чем В присутствии кобальта (1,8-2). То есть железные катализаторы предпочтительнее использовать в процессах, где синтез-газ получается из угля, а кобальт - где из природного и попутного газа, большая часть легких углеводородов и тому подобное.

Синтез Фишера — Тропша — сильно экзотермическая реакция. Отвод выделяющейся теплоты, составляющей до 35 % от теплоты сгорания синтезгаза, является главной проблемой при технической реализации процесса. Важно и то, что необходимо очень точное соблюдение температуры синтеза, особенно для кобальтовых катализаторов.

Во второй главе бакалаврской работы был разобран расчёт хромотограмм и рассмотрена работа хромотографа «Кристалл-2000», приведены данные по приготовлению четырех катализаторов синтеза Фишера - Тропша. Были приготовлены три однокомпонентных катализатора 3% CuO/Al₂O₃; 3% Fe₂O₃/Al₂O₃; 3%NiO/Al₂O₃ и один двухкомпонентный катализатора 3% CuO,3% Fe₂O₃/Al₂O₃.

Состав газового продукта и водно-спиртовой фракции анализировали на хроматографе "Кристалл-2000", предназначенном для анализа газовых и жидких многокомпонентных смесей органического и неорганического происхождения с температурой кипения компонентов до 350°C. Действие хроматографа основано на использовании методов газо-

адсорбционной и газо-жидкостной хроматографии в изотермическом и программированном режимах разогрева разделительных колонок c регистрацией последующим детектированием И анализа на ленте Хроматограф самопишущего потенциометра. оснащен детектором ПО теплопроводности, в качестве газа-носителя использовался гелий, насадка-PorapakQ, температура анализа -175° C.

Хроматографический анализ жидких углеводородных продуктов проводили на аналитическом стационарном лабораторном хроматографе «Кристалл 5000», предназначенном для анализа органических соединений с температурой кипения до 250°С методом газожидкостной и газоадсорбционной хроматографии. Хроматограф оснащен колонкой DB-1 длинной 100 метров, диаметром 0,25 мм, неподвижной жидкой фазой является полиметилсилоксан. Газ-носитель – гелий.

Для приготовления катализаторов использовался метод пропитки. Высокопористый катализатор Al_2O_3 прокаливали в муфельной печи при температуре 600° С в течение 2 часов. Остудив до комнатной температуры, пропитали раствором соли $Fe(NO_3)_3 \cdot 6H_2O$; $Ni(CH_3COO)_2 \cdot 4H_2O$ и $Cu(NO_3)_2 \cdot H_2O$ (предварительно рассчитав содержание металла в соли).

Рассчитанное количество соли растворили в 10 мл дистиллированной воды, а затем залили этим раствором Al_2O_3 и пропитывали в течение 24 часов.

После этого просушивали его в сушильном шкафу при температуре 150°C в течение 2 часов до сыпучего состояния. Затем прокаливаем в муфельной печи 2 час при 600°C, остужаем до комнатной температуры. Приготовленный катализатор прессуем при 10 атмосферах, после чего режем на мелкие гранулы.

Рассчитанное количество соли растворили в 10 мл дистиллированной воды, а затем залили этим раствором Al_2O_3 и пропитывали в течение 24 часов.

Для приготовления однокомпонентных катализаторов использовались те же соли, что и для двухкомпонентного катализаторов. В качестве носителя использовался также γ -Al2O3.

Минус метода многократной пропитки заключается в том, что при нанесении каждый последующий компонент может не адсорбироваться в достаточном количестве на поверхность носителя, так как его поверхность занята предыдущим слоем.

На оксид алюминия наносилось по одному компоненту, после чего полученные однокомпонентные катализаторы смешивались в один так, что конечный катализатор — это смесь из двух равных частей однокомпонентных катализаторов.

Для исследования органического синтеза Фишера — Тропша с целью получения жидкого топлива был проведён ряд опытов на катализаторах (3%)CuO/Al₂O₃, (3%)CuO/Al₂O₃ и смешанном биметаллическом катализаторе (3%)CuO(3%)Fe₂O₃/Al₂O₃ в температурном диапазоне от 250 до 500 °C.

Произведён расчёт степени конверсии по монооксиду углерода органического синтеза на катализаторах (3%) Fe_2O_3/Al_2O_3 , (3%) CuO/Al_2O_3 и (3%) $CuO(3\%)Fe_2O_3/Al_2O_3$.

3%CuO/Al₂O₃имеет Степень конверсии монооксида углерода на максимальное значение при 250-300 °С и постепенно падает при повышении температуры. В биметаллическом TO время как на 3%CuO,3%Fe₂O₃/Al₂O₃степень конверсии СО возрастает при повышении температуры до 400°С. Дальнейший нагрев понижает степень конверсии.

В ходе экспериментов было установлено, что на катализаторе $3\%\text{CuO/Al}_2\text{O}_3$ степень конверсии растёт до температуры с отметкой 350°C , но при дальнейшем повышении температуры наблюдаем понижение конверсии монооксида углерода. Также было отмечено, что на биметаллическом

катализаторе 3% CuO,3% Fe $_2$ O $_3$ /Al $_2$ O $_3$ степень конверсии преобладает в сравнении с монометаллическими катализаторами 3% Fe $_2$ O $_3$ /Al $_2$ O $_3$ и 3% CuO/Al $_2$ O $_3$

Результаты опытов на 3% CuO/Al₂O₃при температурах от 250 до 500°С. Эффективной температурой проведения процесса является 350°С. Наибольший выход углеводородов приходится на гексан нормального и изомерного строения, который составляет 30,4%. Конверсия монооксида углерода до 350°С возрастает, но при дальнейшем нагреве начинает падать. Выход оксида углерода (II) с повышение температуры возрастает с 5% до 10% при 250°С.

Выход парафинов и изопарафинов на 3% Fe₂O₃/Al₂O₃ катализаторе с ростом температуры снижается. Выход оксида углерода (II) также уменьшается с 10,94% при 250°C до 5,88% при 500 °C. С увеличением температуры также понижается выход жидких продуктов. Температурой наиболее эффективного проведения процесса Фишера — Тропша на 3% Fe₂O₃/Al₂O₃ катализаторе с максимальным выходом углеводородов является 300°C. Выход метанола снизился с 10% до 2%. Выход пентановой фракции уменьшился с 3% до 1%.

На биметаллическом катализаторе выход жидкой фракции оказался больше, чем на монометаллических катализаторах. С повышением температуры выход оксида углерода(II) возрастает и достигает максимального значения при 400° C, равное 16,84%. Выход метанола также возрастает и достигает 17,64% при 400° C. Максимальный выход пентановой фракции достигается при температурах 400° C и 450° C и составляет 6%.

ЗАКЛЮЧЕНИЕ

По результатам исследований можно сделать следующие выводы:

- Изучено превращение синтез-газа на 3% CuO/Al₂O₃; 3% Fe₂O₃/Al₂O₃ и 3% CuO,3% Fe₂O₃/Al₂O₃ катализаторах в интервале температур 250-500°C при давлении 1 атм. Показано, что степень конверсии сырья достигает 35% при температуре 400°C на 3% CuO,3% Fe₂O₃/Al₂O₃. катализаторе.
- Использование 3% Fe $_2$ O $_3$ /Al $_2$ O $_3$ катализатора по сравнению с 3%CuO/Al $_2$ O $_3$ позволило увеличить содержание углеводородов с 66,7% до 75,8 при температуре процесса 350°C.
- Доказано, что в результате конверсии CO на $3\%CuO,3\%Fe_2O_3/Al_2O_3$ катализаторе образуется преимущественно CH_3OH . Селективность по CH_3OH составила 35% при 400°C.