Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра Математического и компьютерного	
моделирования	

АВТОРЕФЕРАТ

по направлению		38.03.05 – Бизнес-информат	гика	
студентки	<u>4</u> курса	механико-математического факультета		
	Ки	селёвой Елены Владимиров	НЫ	
Тема работы:		«Информационная система «Библиотека» »		
T				
Научный руководитель				
Научный руков	водитель		Л.В. Кальянов	
профессор д.э.н	Н.			
должность, уч. степень, уч. звание		подпись, дата	инициалы, фамилия	
Зав. кафедрой				
д.ф.–м.н			Ю.А. Блинков	
получесть ун степень ун звание		полинеь пата	ининиалы фамилия	

ВВЕДЕНИЕ

Актуальность темы исследования. В настоящее время, несмотря на повышение компьютеризации общества, в сфере бизнеса и торговли до сих пор нет средств, позволяющих в достаточной мере автоматизировать процесс ведения документации и отчетности.

Одной из основных задач можно рассматривать проблему ведения отчетности, а так же оперативную корректировку данных при возникновении необходимости в этом.

О своевременности и актуальности рассматриваемой проблемы говорит тот факт, что большую часть своего времени администрация магазина тратит на оформление различной документации и отчетов. Огромное количество магазинов и отсутствие предложений в данной сфере гарантирует высокую потребность в данном продукте.

Объектом для создания базы данных являлась библиотека. Данная база данных предлагает введение отчетности, хранения данных, ввод и корректировку данных.

Базу данных могут использовать не только администрация библиотеки, но также и рабочий персонал библиотеки.

Так как существуют большие библиотеки им необходимо иметь свою базу данных, чтобы контролировать информационный поток данных. В них хранится достаточно много информации которую трудно обрабатывать вручную.

Актуальность темы в том, что базы данных составляют в настоящее время основу компьютерного обеспечения информационных процессов, входящих практически во все сферы человеческой деятельности.

Одно из основных назначений системы управления базами данных – поддержка программными средствами представления, соответствующего реальности.

Предметной областью называется фрагмент реальности, который описывается или моделируется с помощью баз данных и ее приложений. В предметной области выделяются информационные объекты – идентифицируемые объекты реального мира, процессы, системы, понятия и т.д., сведения о которых хранятся в базах данных.

Актуальность определила выбор темы данной работы: «Информационная система «Библиотека» ».

Целью работы является проектирование базы данных библиотеки, которая может хранить данные и предоставлять пользователю удобную работу с данными.

Объект исследования – информационная система.

Предмет исследования — система работы библиотеки, на основе информации, которой создана база данных.

Для достижения поставленных целей в работе необходимо решить следующие задачи:

- 1) рассмотреть основные понятия информационных систем;
- 2) исследовать способ создания и непосредственно работы баз данных;
- 3) рассмотреть структурированный язык запросов SQL;
- 4) представить основные механизмы работы SQL;
- 5) описать исходные данных работы библиотеки;
- 6) создать схему отношений базы данных библиотеки;
- 7) предоставить общие команды по работе с информационной системой библиотеки;

Теоретико-методологической основной исследования явились концепции, раскрывающие сущность работы библиотеки и рекомендации по созданию информационных систем (Балдин К.В., Федотова Е.Л., Советов Б.Я., Кириллов В.В., Мамаев Е., Коршунова О.П.).

Для решения поставленных задач были использованы следующие теоретические методы исследования: моделирование, анализ, сравнение, статистический метод.

Основное содержание работы. Выпускная квалификационная работа состоит из введения, двух теоретической и одной практической главы, заключения, списка использованных источников.

Введение содержит основные положения: статистически подкрепленную актуальность темы исследования; цель, объект, предмет, задачи исследования; практическую значимость исследования.

Первая глава «Основные концепции информационных систем и баз данных» раскрывает смысл информационных систем и систем управления базами данных.

Информационная система — это взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели. Современное понимание информационной системы предполагает использование в качестве основного технического средства переработки информации компьютера. Необходимо понимать разницу между компьютерами и информационными системами. Компьютеры, оснащенные специализированными программными средствами, являются технической базой и инструментом для информационных систем. Информационная система немыслима без персонала, взаимодействующего с компьютерами и телекоммуникациями.

Процессы, обеспечивающие работу информационной системы любого назначения, условно можно представить состоящими из следующих блоков:

- 1) Ввод информации из внешних или внутренних источников;
- 2) Обработка входной информации и представление ее в удобном виде;
- 3) Вывод информации для представления потребителям или передачи в другую систему;
- 4) Обратная связь это информация, переработанная людьми данной организации для коррекции входной информации.

В целом информационные системы определяется следующими свойствами:

1) Любая информационная система может быть подвергнута анализу, построена и управляема на основе общих принципов построения систем;

- 2) Информационная система является динамичной и развивающейся;
- 3) При построении информационной системы необходимо использовать системный подход;
- 4) Выходной продукцией информационной системы является информация, на основе которой принимаются решения;
- 5) Информационную систему следует воспринимать как человекомашинную систему обработки информации.

Внедрение информационных систем может способствовать:

- 1) Получению более рациональных вариантов решения управленческих задач за счет внедрения математических методов;
- 2) Освобождению работников от рутинной работы за счет ее автоматизации;
 - 3) Обеспечению достоверности информации;
- 4) Совершенствованию структуры информационных потоков (включая систему документооборота);
 - 5) Предоставлению потребителям уникальных услуг;
- 6) Уменьшению затрат на производство продуктов и услуг (включая информационные).

Тип информационной системы зависит от того, чьи интересы она обслуживает и на каком уровне управления. По характеру представления и логической организации хранимой информации информационные системы подразделяются на фактографические, документальные и геоинформационные.

Фактографические информационные системы накапливают и хранят данные в виде множества экземпляров одного или нескольких типов структурных элементов (информационных объектов). Каждый из таких экземпляров или некоторая их совокупность отражают сведения по какомулибо факту, событию отдельно от всех прочих сведений и фактов.

В документальных (документированных) информационных системах единичным элементом информации является нерасчлененный на более мелкие элементы документ и информация при вводе (входной документ),

как правило, не структурируется, или структурируется в ограниченном виде. Для вводимого документа могут устанавливаться некоторые формализованные позиции (дата изготовления, исполнитель, тематика).

В геоинформационных системах данные организованы в виде отдельных информационных объектов (с определенным набором реквизитов), привязанных к общей электронной топографической основе (электронной карте). Геоинформационные системы применяются для информационного обеспечения в тех предметных областях, структура информационных объектов и процессов в которых имеет пространственно-географический компонент (маршруты транспорта, коммунальное хозяйство).

Во второй главе «Структурированный язык запросов SQL» описывается язык SQL, как один из самых распространенных языков запросов.

SQL (Structured Query Language - "язык структурированных запросов") универсальный компьютерный язык, применяемый для создания, модификации и управления данными в реляционных базах данных. Реляционная база данных - база данных, основанная на реляционной модели данных. Реляционная модель данных (РМД) - логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка.является непроцедурным языком и не содержит операторов управления, организации подпрограмм, ввода-вывода и т.п. В связи с этим SQL автономно не обычно погружен встроенного используется, ОН В среду языка программирования СУБД (например, FoxPro СУБД Visual FoxPro, ObjectPAL СУБД Paradox, Visual Basic for Applications СУБД Access).

В современных СУБД с интерактивным интерфейсом можно создавать запросы, используя другие средства, например QBE. Однако применение SQL зачастую позволяет повысить эффективность обработки данных в базе. Например, при подготовке запроса в среде Access можно перейти из окна Конструктора запросов (формулировки запроса по образцу на языке QBE) в окно с эквивалентным оператором SQL. Подготовку нового запроса путем

редактирования уже имеющегося в ряде случае проще выполнить путем изменения оператора SQL. В различных СУБД состав операторов SQL может несколько отличаться.

Язык SQL не обладает функциями полноценного языка разработки, а ориентирован на доступ к данным, поэтому его включают в состав средств разработки программ. В этом случае его называют встроенным SQL. Стандарт языка SQL поддерживают современные реализации следующих языков программирования: PL/1, Ada, C, COBOL, Fortran, MUMPS и Pascal.

В специализированных системах разработки приложений типа клиент-сервер (данную архитектуру мы рассмотрим позже) среда программирования, кроме того, обычно дополнена коммуникационными средствами (установление и разъединение соединений с серверами БД, обнаружение и обработка возникающих в сети ошибок и. т.д.), средствами разработки пользовательских интерфейсов, средствами проектирования и отладки.

Различают два основных метода использования встроенного SQL: статический и динамический.

В статическом использовании языка (статический SQL) в тексте программы имеются фиксированные по структуре вызовы функций языка SQL, включаемые в выполняемый модуль в процессе компиляции. Параметры запросов (обычно представляют константные значения, с которыми сравниваются значения полей в таблицах), являющиеся переменными языка программирования, позволяют добиться некоторой гибкости статических запросов.

При динамическом использовании языка (динамический SQL) предполагается динамическое построение запроса в форме текстовой строки. Данная строка используется как параметр для функции выполнения SQL-запросов, которая выполняет синтаксический анализ строки запроса и формирует на его основе последовательность команд БД. Динамический метод обычно применяется в случаях, когда в приложении заранее неизвестен вид SQL-вызова.

результате выборки данных из одной или нескольких, таблиц может быть получено множество записей, называемое представлением. Представление по существу является таблицей, формируемой в результате выполнения запроса, которая существует "виртуально" только до завершения выполнения программы.

Для удобства работы с представлениями в язык SQL введено понятие курсора. Курсор представляет собой своеобразный указатель на набор записей в представлении, обеспечивающий в каждый момент доступ лишь к некоторой небольшой части строк представления.

С помощью операторов перемещения курсора по записям можно получить доступ ко всем строкам таблицы.

В третьей главе «Создание информационной системы «Библиотека» описано непосредственно создание информационной системы библиотеки с помощью программы SQLite expert personal, а так же приведен пример работы с данной системой.

Данная система предназначенной для абстрактного заказчика, поэтому набор требований к ней составляется, исходя из собственного представления о задаче автоматизации работы библиотеки.

Сформулируем требования к нашему проекту. Информационная система «Библиотека» предназначена для ввода, хранения и обработки информации о:

- печатных изданиях, поступающих в библиотеку;
- читателях, посещающих библиотеку, и прикрепленных к ним читательских билетов
 - рабочем персонале библиотеки;

Информация о печатных изданиях должна включать в себя такую информацию, как:

- название произведения;
- автор произведения, жанр;
- название издания и его год;
- дату внесения в базу и сектор расположения.

Информация о читателях должна включать личные данные и данные о печатных изданиях, которые он берет на абонемент или в читальный зал. Так же должна присутствовать информация о задержках и утерях выданных книг и соответствующих штрафах.

Читательский билет должен содержать информацию о дате его регистрации и дате продления, либо снятия с учета.

Информация о работниках библиотеки так же должна содержать личную информацию, и информацию профессионального характера.

Информационная система «Библиотека» должна обеспечить выполнение следующих действий:

- выдача и возврат книг;
- прием новых читателей;
- регистрация новых читательских билетов;
- регистрация нового персонала;
- прием новый печатных изданий;
- учет своевременный сдачи и отслеживание задолжников;

Информационная система «Библиотека» должна отслеживать читателей, нарушающих правила пользования библиотекой – задолжников.

ЗАКЛЮЧЕНИЕ

Основным результатом работы является разработка информационной системы с использованием структурированного языка запросов SQL, в программе SQLite expert personal. Представлен был обзор информации о базах данных и системах управления ими. По данным результатам была представлена непосредственно база данных «Библиотека» и пример работы с данной базой.