Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра аналитической химии и химической экологии

ИНДИКАТОРНЫЕ БУМАГИ ДЛЯ ТЕСТ-ОПРЕДЕЛЕНИЯ ИОНОВ Cu^{2+}

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента <u>IV</u> курса <u>421</u> группі	Ы	
направления 44.03.01 Педаго	огическое образование	«химих»
Института химии	_	
Магжанова Руслана Габдыльуа	ахитовича	
Научный руководитель		
Доцент, к.х.н.		И.В. Косырева
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
Зав. кафедрой		
д.х.н., профессор		Т.Ю. Русанова
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
должность, ут. степень, ут. звание	подпись, дата	ипициалы, фамилия

ВВЕДЕНИЕ

Для организма человека медь является одним из важнейших микроэлементов: участвует в процессах обмена веществ, в тканевом дыхании, повышает устойчивость организма к некоторым инфекциям. Однако высокие концентрации меди могут приводить к расстройствам нервной системы, нарушениям функций печени и почек и другим. Медь в организм человека попадает вместе с продуктами питания и питьевой водой. Поэтому контроль за ее содержанием в данных объектах является важной задачей.

Определение ионов металлов с помощью тест-методов является новой задачей, которая предстала перед химиками аналитиками. Тест - методы - это экспрессные, простые и дешевые приемы обнаружения и определения вещества на месте (on site).

Целью данной выпускной квалификационной работы является разработка индикаторных бумаг для тест – определения ионов Cu(II).

Целью работы является разработка индикаторных бумаг для тест - определения ионов меди (II) с помощью иммобилизованной рубеановодородной кислоты.


Структура работы. Бакалаврская работа общим объемом 57 страниц машинописного текста состоит из введения, двух основных глав: 1 глава – литературный обзор; 2 глава – экспериментальная часть (6 разделов) и заключения.

Практическая значимость: разработка тест - методики определения ионов Cu^{2+} в объектах окружающей среды.

Основное содержание работы

Первый раздел — литературный обзор методов определения Cu^{2+} в водных объектах .

Для определения ионов Cu^{2+} применялись такие методы, как гравиметрический, титрометрический, спектрофотометрический, полярографический и другие.

Второй раздел – экспериментальная часть, включает в себя следующие разделы и подразделы:

- 2.1 Реагенты и аппаратура
- 2.2 Методики приготовления и стандартизации растворов
- 3 Способы иммобилизации рубеановодородной кислоты на поверхности бумаги в присутствии и отсутствии ПАВ
- 3.1 Способы иммобилизации рубеановодородной кислоты поверхности бумаги в присутствии ПАВ
- 4. Изучение реакции взаимодействия ионов меди(II) с рубеановодородной кислотой на поверхности бумаги
- 4.1 Визуально-колориметрическое и цветометрическое определение ионов Cu(II) с помощью индикаторных бумаг на основе иммобилизованной рубеановодородной кислоты
- 4.2 Изучение профилей лепестковых диаграмм при определении Cu(II) с иммобилизованной рубеановодородной кислотой
- 5. Изучение реакции взаимодействия ионов Cu(II) с рубеановодородной кислотой на поверхности бумаги с помощью спектроскопии диффузного отражения
- 6 Разработка тест методики для определения ионов Cu(II) с иммобилизованной рубеановодородной кислотой

Тест – методика определения Cu^{2+} . Тест – методика определения Cu^{2+} .с помощью иммобилизованного рубеановодородной кислотой

Визуально-колориметрическое определение меди (II) при pH=7.

В результате обработки были составлены цветовые шкалы:

Иммобилизованная рубеановодородная кислота (1·10⁻²M) +Cu(II) в среде ацетатно-аммиачного буферного раствора(pH=7)

 $Kohtp. 1 \cdot 10^{-5}M; 5 \cdot 10^{-5}M; 1 \cdot 10^{-4}M; 5 \cdot 10^{-4}M; 1 \cdot 10^{-3}M; 5 \cdot 10^{-3}M; 1 \cdot 10^{-2}M; 5 \cdot 10^{-2}M; 1 \cdot 10^$

C(Cu(II))

 $H\Gamma OC=1\cdot 10^{-5}M$

Визуально-коллориметрическое определение меди (II) иммобилизованной PBK в среде ацетатно-аммиачного буферного раствора pH=7 в присутствии ΠAB .

Для изучения влияния ПАВ на систему Cu(II) –PВК в среде ацетатно-аммиачного буферного раствора, готовили индикаторные бумаги, содержащие ЦПХ (до и после ККМ), ДДС (до и после ККМ), ОП-10(1% в растворе). Диапазон содержания Cu(II) в пределах от $5\cdot10^{-2}$ М- $1\cdot10^{-5}$ М

Контрольные образцы содержали иммобилизованную РВК 1·10⁻²M, различные виды ПАВ и буферный ацетатно-аммиачный раствор рН=7.

Визуально-колориметрическое определение Си (II)в присутствии ЦПХ до ККМ прирH=7

 $Kohtp.1 \cdot 10^{\text{-5}}M; 5 \cdot 10^{\text{-5}}M; 1 \cdot 10^{\text{-4}}M; 5 \cdot 10^{\text{-4}}M; 1 \cdot 10^{\text{-3}}M; 5 \cdot 10^{\text{-3}}M; 1 \cdot 10^{\text{-2}}M; 5 \cdot 10^{\text{-2}}M;$

C(Cu(II))

 $H\Gamma OC=1\cdot 10^{-5}M$

Цветометрическое определение Cu²⁺.

Окрашенные продукты реакции фотографировали фотокамерой iPhone5S.

Для обработки полученных данных использовали графический редактор Adobe Photoshop CS6 x64 и авторскую онлайн программу по определению RGB - канала (программу составил студент 2 курса КНиИТ http://him.its-node.ru). В программе Adobe Photoshop CS6 x64 цветную область усредняли до одного пикселя, затем в этой части изображения определяли яркость цветовых каналов R, G, B. По данным канала – RGB, строили графики зависимости яркости цветового канала от логарифма концентрации ионов металла в программе Microsoft Excel представленных на рисунках.

На рисунке 1 представлена зависимость I-pC для цветового канала R(I = 180), контрастности ($\Delta I = 160$), наибольшей чувствительности ($tg\alpha = 50$) и коэффициенту регрессии ($R^2 = 0.943$),которую можно применить для количественного определения Cu(II).

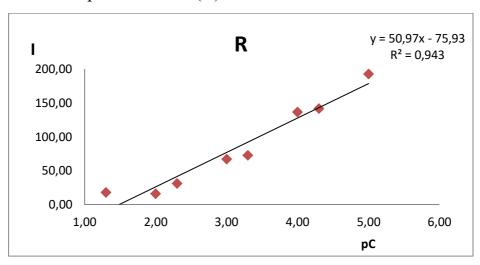


Рисунок 1- Зависимость яркости канала R от логарифма концентрации ионов Cu(II) всистеме Cu(II)+PBK $1\cdot 10^{-2}$ M в среде ацетатно-аммиачногобуферного раствора (pH=7)

Цветометрическое определение ионов Cu (II) при ЦПХ до KKM в среде ацетатно-аммиачного буферного раствора pH=7

На рисунке 2 представлен цветовой канал –R, зависимосты— pC, яркость(I = 190), контрастность ($\Delta I = 150$), наибольшей чувствительность ($tg\alpha = 42$) и коэффициенту регрессии ($R^2 = 0.9375$). Полученные данные можно применить для количественного определения Cu(II).

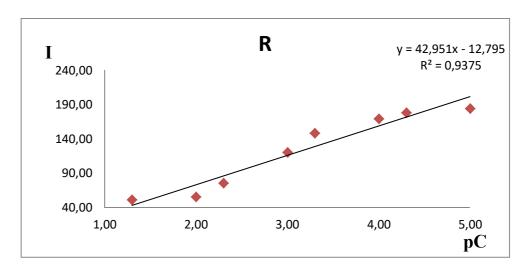
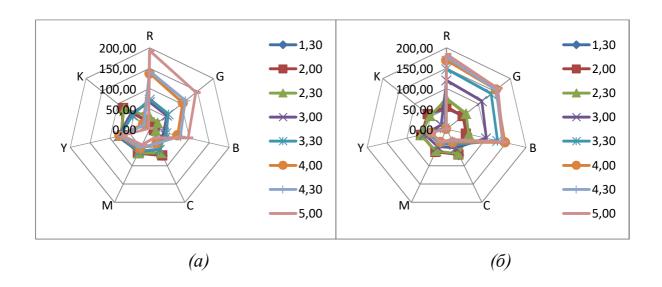



Рисунок 2 - Зависимость яркости канала G от логарифма концентрации ионов Cu(II) в системе Cu(II)+ PBK $1\cdot 10^{-2}$ M + ЦПХ (до ККМ) + ацетатно-аммиачный буферный раствор (pH=7)

Изучение профилей лепестковых диаграмм при определении Cu(II) с иммобилизованной рубеановодородной кислотой

Нами был впервые предложен подход обработки цифровых изображений в виде лепестковых диаграмм (ЛД), с 6-ю осями в полярных координатах, отражающими значения интенсивности (Fi) цветовых координат в модели RGB в одинаковой последовательности R1, G1, B1, R2, G2, B2, где индекс 1 и 2 относятся соответственно к 1-ой и 2-ой цветным реакциям, а также в координатах RGB СМҮК.

Рисунок 3— Зависимость RGB СҮМК — pC (ЛД) (а)Cu(II)-иммобилизованный PBK(pH= 7); (б) -Cu(II)-иммобилизованный PBK (pH= 7)

Согласно рисунку 3 (а), (б) профиль ЛД увеличивается при увеличении концентрации ионов меди (II), также наблюдается расширение профиля ЛД с добавлением ПАВ, площадь профиля ЛД возрастает, как с иммобилизованной РВК в отсутствии ПАВ ($S=16508;\ 16153;\ 17834;\ 21350;\ 23086;\ 31991;\ 33930;\ 45164)$ так и в присутствии ПАВ ($S=21800;\ 22002;$ и 24628; 34584; 44670; 52166; 52541) в среде ацетатно-аммиачного буферного раствора рH=7. Полученные профили ЛД позволяют определить ионы меди(II), как качественно, так и количественно.

Площадь (S) и периметр (P), которые рассчитывали по следующим формулам:

$$P = \sum \sqrt{a^2 + b^2 - 2ab * \cos(ab)}, (1),$$

$$S = \sum (a + b * \sin(ab)) , \qquad (2),$$

где *а,b*– стороны треугольника;

cos(ab) – cos угла между сторонами a,b.

sin(ab) - sin угла между сторонами a,b.

На рисунках 4 и 5 показана линейная градуировочная зависимость в системе Cu(II) - PBK в среде ацетатно-аммиачного буферного раствора рН = 7 уравнения регрессии и величина достоверности апроксимации представлены на рисунках.

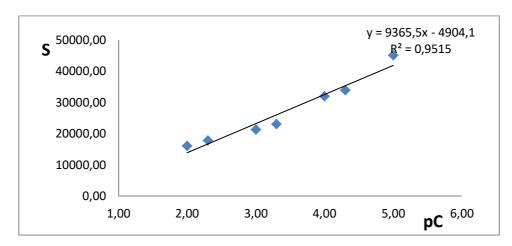


Рисунок 4 — Зависимость площади профиля (S)от логарифма концентрации в системе Cu(II) - PBK (pH=7)

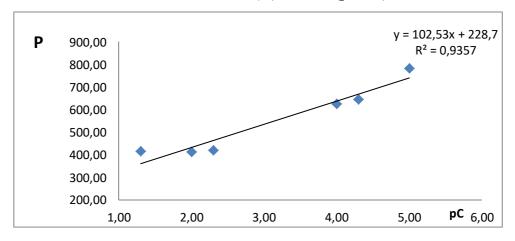


Рисунок 5— Зависимость периметра профиля (P) от логарифма концентрации в системе Cu(II) - PBK (pH=7)

Спектроскопия диффузного отражения ионов Cu^{2+} с иммобилизованной рубеановодородной кислотой.

На рисунке 6 представлены спектры диффузного отражения в виде функции Гуревича-Кубелки-Мунка продуктов взаимодействия ионов Cu (II)с иммобилизованной рубеановодороной кислоты в среде ацетатно-аммиачного буферного раствора (рH=7 и рH=9) на бумажном фильтре (синяя лента).

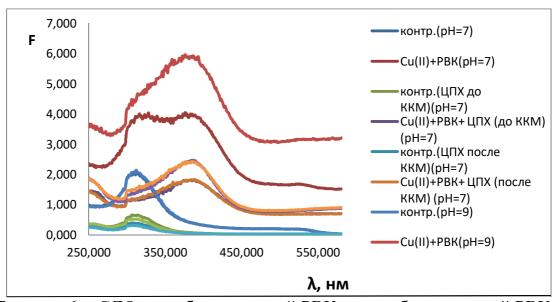


Рисунок 6 -. СДО иммобилизованной РВК и иммобилизованной РВК— ЦПХ(до и после ККМ) и их комплексов с Cu(II).

Как видно из рисунка 6 при введении в систему ионов меди (II) появляется полоса ($\lambda_{max}=330$ нм). При добавлении в систему ЦПХ (до и после ККМ) наблюдается стабилизация одного продукта реакции ($\lambda_{max}=368$ нм).

ЗАКЛЮЧЕНИЕ

- 1. В данной работе был проведен анализ данных литературы по определению меди (II) в водных объектах за последние 15 лет (спектрофотометрический 33%)
- 2. Изучены способы иммобилизации рубеановодородной кислоты, оптимальными условиями взаимодействия иммобилизованного реагента с Cu (II): $C_R \ 1 \cdot 10^{-2} \ M$ в среде ацетатно-аммиачный буферный раствора pH=7
- 3. Проведено визуально-колориметрическое и цветометрическое тест- определение Cu (II) с иммобилизованным реагентом (Cu(II)-PBK (tg α =51, R²= 0,9430)), Cu(II) —PBK- ЦПХ(до ККМ)(tg α = 40, R²= 0,9375), Cu(II) —-PBK ЦПХ(после ККМ)(tg α = 36, R²= 0,9106) ДОС $1\cdot10^{-5}$ - $5\cdot10^{-2}$ М.
- 4. С помощью спектроскопии диффузного отражения изучена реакция взаимодействия ионов Cu (II) с иммобилизованной PBK($\lambda_{max} = 368$ нм).
- 5. Построены профили лепестковых диаграмм при качественном и количественном определении Cu(II), получены линейные зависимости площади и периметра от концентрации иммобилизованной рубеановодородной кислоты в отсутствии ПАВ (S=16508; 16153; 17834; 21350; 23086; 31991; 33930; 45161), (в присутствии ПАВ (S=21800; 22002; 24628; 34583; 44670; 52166; 52541)
- 6. Разработана тест-методика определения ионов Cu(II) с помощью иммобилизованной рубеановодородной кислоты ДОС $1\cdot10^{-5}$ - $5\cdot10^{-2}$ М.