Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нелинейной физики

Оценка константы скейлинга перехода к хаосу через каскад бифуркаций удвоения периода в слабодиссипативных системах

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студентки 4 курса 411 группы направления 03.03.01 Прикладные математика и физика факультета нелинейных процессов Фисенко Ольги Андреевны

Научный руководитель

к.ф.-м.н., доцент

А.В. Савин

Зав. кафедрой нелинейной физики

к.ф.-м.н., доцент

8

Е.Н. Бегинин

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нелинейной физики

Оценка константы скейлинга перехода к хаосу через каскад бифуркаций удвоения периода в слабодиссипативных системах

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студентки 4 курса 411 группы	
направления 03.03.01 Прикладные математика и физика	
факультета нелинейных процессов	
Фисенко Ольги Андреевны	
Научный руководитель	
к.фм.н., доцент	А.В. Савин
Зав. кафедрой нелинейной физики	
к.фм.н., доцент	Е.Н. Бегинин

Введение

Движение в пространстве параметров вдоль некоторого направления позволяет наблюдать последовательность бифуркаций, в результате которой может формироваться хаотический аттрактор. Такие типичные бифуркационные последовательности объединяются понятием сценариев перехода к хаосу. Один из сценария перехода к хаосу - каскад бифуркаций удвоения периода [1,2]. Сценарий перехода к хаосу через каскад удвоений периода очень часто наблюдается в динамических системах как с непрерывным, так и с дискретным временем и является одним из основных механизмов развития хаоса.

Модельной системой, демонстрирующей такой сценарий, является логистическое отображение, оно является необратимым и поэтому не может служить моделью реальной системы. Более реалистичной системой является отображение Эно [1].

В настоящей работе используя отображение Эно, мы найдем точки удвоения периодов и рассмотрим, как себя ведет график зависимости констант скейлинга $\delta(n)$ при разных параметрах диссипации. При условии, что параметр диссипации много меньше 1.

В первой главе моей работы рассказывается основные понятия о диссипативной и консервативной системе. Как происходят удвоения периода и переход к хаосу в логистическом отображение

$$x_{n+1} = 1 - \lambda x_n^2 \tag{1}$$

Так же описывается универсальная константа Фейгенбаума и как происходит скейлинг.

Во второй главе рассматривается отображение Эно

$$x_{n+1} = 1 - \lambda x_n^2 - b y_n$$
 (2)
$$y_{n+1} = x_n.$$

которое широко используется в нелинейной динамике. В этом отображение аналитически можно найти 2-цикл и неподвижную точку. По теореме Виета следует

$$x^{2} - \frac{1+b}{\lambda}x + \frac{(1+b)^{2} - \lambda}{\lambda^{2}}$$
 (3)

Из этого уравнения легко находятся элементы цикла:

$$x_{1,2} = \frac{(1+b)\pm\sqrt{\lambda-3(1+b)^2/4}}{2\lambda} \tag{4}$$

Нетрудно видеть, в частности, что корни уравнения существуют только при условии $\lambda>\frac{3(1+b)^2}{4}$, откуда следует, что 2 цикл рождается при условии $\lambda=\frac{3(1+b)^2}{4}$.

В третьей главе используя отображение Эно мы сроим бифуркационные деревья при разных параметрах диссипации b, в интервале от 0.1 до 0.9.

На полученных графиков можно видеть рождение устойчивого 2-цикла из неподвижной точки, каскад бифуркаций удвоения периода и переход к

хаосу. Но по нашим рисункам очень трудно определить точные значения удвоения периода, для этого мы проведем численный анализ нашего отображения и получим значения.

В последней главе мы проводим численный поиск удвоения периода в отображение Эно. Для нахождения точки удвоения периода мы сначала найдем неподвижные точки с помощью метода Ньютона для системы нелинейных уравнений.

В качестве системы нелинейных уравнений мы будем использовать отображение Эно следующего вида:

$$x_{n+1} = 1 - \lambda x_n^2 - b y_n$$

$$y_{n+1} = x_n.$$
(5)

Пусть $x_{n+1} = F_1(x,y)$, а $y_{n+1} = F_2(x,y)$. Выберем нулевое приближение $X^0 = (x^0,y^0)$, принадлежащее области приближенной к точному решению. Построим систему линейных алгебраических уравнений, которая будет иметь вид

$$\frac{\partial F_1}{\partial x}(x - x^0) + \frac{\partial F_1}{\partial x}(y - y^0) = -F_1(x^0, y^0)$$

$$\frac{\partial F_2}{\partial x}(x - x^0) + \frac{\partial F_2}{\partial x}(y - y^0) = -F_2(x^0, y^0)$$
(6)

Обозначим

$$x - x^0 = \Delta x^0 \tag{7}$$
$$y - y^0 = \Delta y^0$$

Решим систему (6) относительно неизвестных $\Delta x^0, \Delta y^0,$ методом Крамера. Запишем формулы Крамера в виде

$$\Delta x^0 = \frac{\Delta_1}{\Delta}$$

$$\Delta y^0 = \frac{\Delta_2}{\Delta}$$
(8)

где основной определитель системы (15)

$$\Delta = \begin{vmatrix} \frac{\partial F_1(x^0, y^0)}{\partial x} & \frac{\partial F_1(x^0, y^0)}{\partial y} \\ \frac{\partial F_2(x^0, y^0)}{\partial x} & \frac{\partial F_2(x^0, y^0)}{\partial y} \end{vmatrix} \neq 0$$
 (9)

а вспомогательные определители системы (6) имеют вид

$$\Delta_{1} = \begin{vmatrix} -F_{1}(x^{0}, y^{0}) & \frac{\partial F_{1}(x^{0}, y^{0})}{\partial y} \\ -F_{2}(x^{0}, y^{0}) & \frac{\partial F_{2}(x^{0}, y^{0})}{\partial y} \end{vmatrix}$$
(10)

$$\Delta_{2} = \begin{vmatrix} \frac{\partial F_{1}(x^{0}, y^{0})}{\partial x} & -F_{1}(x^{0}, y^{0}) \\ \frac{\partial F_{2}(x^{0}, y^{0})}{\partial x} & -F_{2}(x^{0}, y^{0}) \end{vmatrix}$$
(11)

Найденные значения Δx^0 , Δy^0 подставим в уравнения (7) и найдем компоненты $x=x^0+\Delta x^0$, $y=y^0+\Delta y^0$ [9].

Будем решать уравнения (6)-(11) до тех пор пока значения переменных x и x^0 не станут отличаться на маленькую величину. Так мы находим неподвижную точку.

Найдя не подвижную точку, мы можем найти точку удвоения периода, так же с помощью метода Ньютона.

Для этого найдем след и определитель отображения Эно.

Функция $f(\lambda)=1+S+J=0$.

$$\lambda_{n+1} = \lambda_n - \frac{f(\lambda_n)}{f'(\lambda_n)} \tag{12}$$

Где
$$f'(\lambda_n) = rac{f(\lambda_n + \Delta \lambda) - f(\lambda_n - \Delta \lambda)}{2*\Delta \lambda}$$

Таблица 1

b	λ_2	λ_4	λ_8	λ_{16}	λ_{32}
0.1	1.112500	1.216125	1.238319	1.244506	1.245831
0.2	1.000000	1.116121	1.141012	1.146346	1.147489
0.3	0.912500	1.025855	1.050131	1.055332	
0.4	0.850000	0.960426	0.983896	0.988892	
0.5	0.812500	0.920749	0.943414	0.948219	
0.6	0.800000	0.907699	0.927512	0.931699	
0.7	0.805224	0.922022	0.940125	0.943981	
0.8	0.850000	0.964286	0.981000	0.983899	
0.9	0.912499	1.035001	1.052099		

Вычислив параметр удвоения периода λ , мы можем оценить константу скейлинга $\delta(n)$, по формуле:

$$\delta_n = \frac{\lambda_n - \lambda_{n-1}}{\lambda_{n+1} - \lambda_n} \tag{13}$$

Таблица 2

b	δ_4	δ_8	δ_{16}
0.1	4.66905	4.66699	4.66908
0.2	4.66518	4.66648	4.6667
0.3	4.66943	4.66756	
0.4	4.70499	4.69776	
0.5	4.77604	4.71696	
0.6	5.43577	4.73203	
0.7	6.45186	4.6476	
0.8	6.83774	5.76544	
0.9	7.1647		

Из полученных результатов мы видим, что константа скейлинга стремится к 4.669. При маленьких параметрах b можно увидеть, что не зависимо какое период цикла, то константа скейлинга все равно находится приблизительно одинаково. Так же видно, что с ростом параметра b, константа скейлинга возрастает и система переходит из диссипативной в консервативную.

Заключение

В ходе работы мы разработали программу, которая находила точки удвоения периода в слабо диссипативных системах. Полученные результаты смогли показать, что чем больше период цикла, тем больше значение параметра удвоения периода становится больше. Оценивая константу скейлинга в точке удвоения периода, мы видим, что константа скейлинга стремится к константе Фейгенбаума, а значит при больших параметрах диссипации мы увидим, что система переходит из консервативной в диссипативную. При маленьких параметрах b можно увидеть, что не зависимо какое период цикла константа скейлинга все равно находится приблизительно равна δ =4,669, так как параметр диссипации близок к 0, а значит система диссипативна.

Список литературы

- 1) Кузнецов С. П. «Динамический хаос (курс лекций)». Москва: Физматлит, 2001.
- 2) Кузнецов А.П. «Динамические системы и бифуркации». Саратов: Наука, 2015.
- 3) Кузнецов А.П., Савин А.В., Тюрюкина Л.В. «Введение в физику нелинейных отображений». Саратов: Научная книга, 2010.
- 4) Андронов А. А и др. «Теория бифуркаций динамических систем на плоскости». Москва: Наука, 1967.
- 5) Е. В. Никульчев. «Идентификация динамических систем на основе симметрий реконструированных аттракторов». Москва: Мир. 2010.
- 6) Кузнецов А.П., Савин А.В., Седова Ю.В., Тюрюкина Л.В. «Бифуркации отображений». Саратов: Наука, 2012.
- 7) П. Берже, И. Помо, К. Видаль «Порядок в хаосе». Москва: Мир. 1991.
- 8) Henon M.A «two-dimensional mapping with a strange attractor» Commun. Math. Phys 1976
 - 9) Волков Е. А. Численные методы. М.: Физматлит, 2003
- 10) Шашихин В.Н. «Хаос и нелинейная динамика, регулярная и хаотическая динамика». Санкт-Петербург: Издательство Политехнического университета, 2010