Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра радиотехники и электродинамики

Электронные свойства сложных графен-нанотрубных соединений

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 421 группы	
направления 03.03.03 - Радиофи	зика
физического факультета	
Норцева Олега Андреевича	
Научный руководитель	
д.фм.н., профессор	О.Е. Глухова
Вав. кафедрой	
д.фм.н., профессор	О.Е. Глухова

СОДЕРЖАНИЕ

Введение	4
1. Методы исследования	26
1.1.Метод сильной связи SCC-DFTB	26
1.2. Функция пропускания	27
1.3.Электропроводность и электрическое сопротивление	34
2. Результаты работы	36
Заключение	43
Список литературы	44

Введение

часть разработок в области Большая нанотехнологии углеродными наноструктурными материалами. Объектами исследования данной работы являлись углеродные наноструктуры, открытые в течение последних 20 лет, а именно углеродные нанотрубки (УНТ) и графены, их гибридные соединения. Интерес к этим наноструктурам был вызван тем, что вследствие молекулярного масштаба, а также достаточно сложной конфигурации, они обладают новыми необычными физическими и химическими характеристиками. В настоящий момент благодаря своим уникальным свойствам они считаются наиболее перспективных материалов одними наноэлектроники наномеханики.

УНТ имеют большое разнообразие форм и свойств. Они могут быть одностенными и многостенными (однослойными и многослойными), прямыми и спиральными, длинными или короткими, иметь спектр электронных состояний, соответствующий полупроводника, металлам И т.д. Нанотрубки И необыкновенно прочны как на растяжение, так и на изгиб. Под действием больших механических напряжений они не рвутся, не ломаются, а просто перестраивают свою структуру. УНТ обладают важными для практического использования свойствами: способны проводить ток очень высокой плотности (до $10^9 \,\text{A/cm}^2$), менять свои свойства при присоединении (адсорбции) других атомов и молекул, испускать электроны со своих концов при низких температурах (холодная электронная эмиссия), излучать свет и т.д. Во всем мире ведутся интенсивные исследования свойств УНТ, что расширяет область их практического применения [2].

Необходимо отметить, что к настоящему моменту технология синтеза сложных нанотрубных соединений достаточно развита, и их синтез воспроизводим, контролируем, обладает высоким процентом выхода.

Еще один углеродный наноструктурный материал — графен представляет собой отдельный лист графита. В обзоре [9] авторы сочли необходимым изложить этот материал «в связке» с графитом, имея в виду их явное родство. Такой анализ указывает на возможность появления новых наноформ углерода с необычным комплексом свойств. Несмотря на то, что впервые такая гексагональная двумерная (2D) структура теоретически была рассчитана еще 60 лет назад (Wallace, 1947), получить и идентифицировать его удалось лишь на современном этапе развития технологий (Geim, 2004).

Графен рассматривается как единственный перспективный материал для наноэлектроники будущего как в виде продолжения «классической»

микроэлектроники, так и в варианте спинтроники, нейросетей и т.п. Считается, что полностью углеродная электроника будет избавлена от ряда трудноразрешимых проблем современной сверхплотной электроники, таких как отвод тепла, увеличение быстродействия, достижение атомных размеров элементов и т.п. [1].

Ученые предполагают, что графен должен стать превосходной заменой кремнию, в особенности в полупроводниковой промышленности. Неслучайно его называют «материалом будущего». Несмотря на «молодость» графена, исследователи находят все новые его свойства, которые могут открыть невероятные возможности перед человечеством.

Открытие графена пробудило повышенный интерес к другим наноформам углерода; это — наночастицы углерода, углеродные микрогранулы, в том числе — пустотелые, ультрадисперсный нанографит — чешуйки графита в несколько сотен слоёв, дисперсный окисленный графит и т.п.

Целью выпускной квалификационной работы является исследование электрической проводимости гибридных графен-нанотрубных соединений и оценка перспектив их применения в электронных устройствах.

В данной работе были поставлены и решены следующие задачи:

- 1. Построение атомистических моделей (супер-ячеек) гибридных систем графен-нанотрубка;
- 2. Исследование статической электропроводности и соответствующей ей обратной величины электрического сопротивления на моделях построенных супер-ячеек.

1. Методы исследования

Методами моделирования выступили молекулярно-механический метод AIREBO и квантовый метод SCC-DFTB. Оптимизация геометрии осуществлялась на основе метода функционала плотности (DFT) с помощью инструмента DFTB + B том же программном пакете. Динамические исследования проведены с помощью open source KVAZAR (http://nanokvazar.ru).

DFTB + - это быстрый и эффективный универсальный программный пакет для моделирования квантовой механики. Он основан на методе функционала электронной плотности в неортогональной схеме сильной связи (DFTB), который содержит почти все полезные расширения, которые были разработаны платформы DFTB. Используя **DFTB** ДЛЯ онжом выполнять моделирование, квантовомеханическое аналогичное теории функционала плотности, но приближенным образом, обычно достигающим примерно двух порядков величины.

1.1. Метод исследования SCC-DFTB

Поскольку подробные изложения метода SCC-DFTB приведены в работах [7,8] рассмотрим его лишь кратко, чтобы определить обозначение и предоставить основу для описания процедуры подгонки.

Метод возник из теории функционала плотности (DFT) посредством разложения второго порядка полной энергии DFT по изменению плотности заряда, $\delta \rho$, относительно выбранной контрольной плотности, ρ_0 .

При помощи приведенных приближений и определений, изложенных в статье [7], общая энергия метода SCC-DFTB определяется выражением:

$$E_{2}^{TB} = \sum_{i}^{occ} \langle \psi_{i} [\widehat{H}_{0}] \psi_{i} \rangle + \frac{1}{2} \sum_{\alpha,\beta}^{N} \gamma_{\alpha\beta} \Delta q_{\alpha} \Delta q_{\beta} + E_{rep},$$

где \widehat{H}_0 – невозмущенный гамильтониан, зависящий от плотности заряда ρ_0 ;

 ψ_i – волновая функция;

 Δq_{α} , $\Delta q_{\beta}-$ заряды на атомах, полученные в результате поправки;

Y – параметр Хаббарда (химическая жесткость);

 E_{rep} — энергия отталкивания электронов.

Учитывая приближенное уравнение

$$\delta
ho=\sum_A\delta
ho^A$$
 ;

$$\delta \rho^A \approx \Delta q^A = q^A - q_0^A$$

(Величина q_0^A равна числу валентных электронов нейтрального атома A, а q^A - популяция из анализа Малликена),

потенциал отталкивания E_{rep} может быть упрощен. Это не зависит от изменения плотности заряда $\delta \rho$ и, следовательно, не содержит каких-либо дальнодействующих кулоновских взаимодействий из-за нейтральности атомных плотностей. Формально E_{rep} можно развернуть в ряд:

$$\begin{split} E_{rep}[\rho_0] &= \sum_A E_{rep}[\rho_0{}^A] \\ &+ \frac{1}{2} \sum_A \sum_B \left\{ E_{rep}[\rho_0{}^A + \rho_0{}^B] - E_{rep}[\rho_0{}^A] - E_{rep}[\rho_0{}^B] \right\} + \cdots \end{split}$$

Три центральных члена считаются малыми и ими пренебрегают. Поэтому потенциал отталкивания E_{rep} аппроксимируется как сумма набора парных атомно-атомных потенциалов. Поскольку ρ_0 соответствует плотности заряда нейтрального атома, электрон-электрон и нуклеино-нуклеиновые отталкивания не происходят при больших межатомных расстояниях. Поэтому E_{rep} можно считать коротким. Однако при большом межатомном расстоянии R_{AB} потенциал отталкивания не приближается к нулю:

$$E_{rep}[\rho_0] = \sum_A E_{rep}[\rho_0{}^A]; \quad R_{AB} \to \infty$$

Величина $E_{rep}[\rho_0^A]$ содержит члены с двойным подсчетом для атома A, т.е. члены в фигурных скобках в уравнении (1) работы [7].

Вычитая асимптотические значения атомов, получим новую функцию

$$\tilde{E}_{rep}[\rho_0] = E_{rep}[\rho_0] - \sum_A E_{rep}[\rho_0^A] = \frac{1}{2} \sum_{A,B} U_{rep}^{A-B}[\rho_0^A, \rho_0^B; R_{AB}],$$

которая представляет собой потенциал отталкивания относительно энергии нейтральных атомов; он приближается к нулю при больших межатомных расстояниях. Параметрические функции $U_{rep}^{\ A-B}$ затем устанавливаются для отобранных систем отсчета [7] и предполагаются переносимыми в расчетах для

более сложных молекул. Поэтому, как правило, важно провести обширные тестовые вычисления для параметров до того, как они будут применены к новой проблеме.

1.2. Функция пропускания

Величина

$$\overline{T}(E) \equiv Tr[\Gamma_1 A_2] = Tr[\Gamma_2 A_1] = Tr[\Gamma_1 G \Gamma_2 G^+] = Tr[\Gamma_2 G \Gamma_1 G^+]$$
 (1.2.1)

называется функцией или коэффициентом пропускания (прозрачности).

Она определяет скорость, с которой электроны перемещаются от истока к стоку [4].

1.3. Электропроводность и электрическое сопротивление

Проводимость G (величина, обратная сопротивлению) большого макроскопического проводника прямо пропорциональна площади его поперечного сечения A и обратно пропорциональна его длине L:

$$G = \sigma A/L$$
(из закона Ома),

где σ —удельная проводимость (характеристика материала проводника).

Исходя из связи электрического сопротивления R и проводимости G в выражении

$$R=1/G$$

получим формулу для расчета электрического сопротивления

$$R = L/\sigma A$$
.

Чтобы провести измерение проводимости малого объекта, к нему необходимо присоединить два больших контакта, которые соединяют его с батареей.

Сила тока, протекающего через микроскопическое устройство лишь с одним энергетическим уровнем в интересующем нас интервале, вычисляется очень просто, и зависит от качества контактов. Но для канала с одним уровнем (в интересующем нас энергетическом интервале) существует максимальная проводимость, которая является фундаментальной постоянной, зависящей от заряда электрона и постоянной Планка:

$$G_0 \equiv q^2/h = 38.7 \mu S = (25.8 k\Omega)^{-1}$$
.

Можно также воспользоваться формулой, связывающей проводимость и сопротивление и, как в первом случае, получить формулу для расчета сопротивления

$$R = h/q^2 \tag{1.3.1}$$

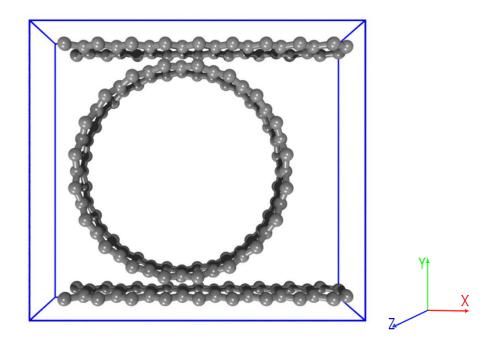
Обычно микроскопические каналы содержат два вырожденных уровня с одинаковой энергией, один из которых отвечает проекции спина «вверх», а второй — проекции спина «вниз». В данном случае максимальная проводимость становится равной $2G_0$. Если контакты не достаточно хорошие, то измеряется всегда меньшая проводимость. Но основная мысль в том, что существует верхний предел проводимости, т.е. максимум того, что можно измерить, располагая даже самыми идеальными контактами, что рассматривается в работе [4].

В более узком смысле, электронная проводимость при заданной температуре вычисляется по следующей формуле:

$$G = \frac{e^2}{h} \int T(E) F_T(E) dE, \qquad (1.3.2)$$

гдеT(E) — функция пропускания;

$$F_T(E) = \frac{1}{4k_BT} sech^2 \left(\frac{E-\mu}{2k_BT} \right)$$
 — функция теплового уширения.


Аналогично, следуя приведенным выше рассуждениям, получим выражение для электрического сопротивления

$$R = 1 / \left(\frac{e^2}{h} \int T(E) F_T(E) dE\right). \tag{1.3.3}$$

Полученные формулы (1.3.2) и (1.3.3) использовались при выполнении экспериментальной части работы.

2. Результаты исследования

Для достижения **первой задачи** использовался программный комплекс «**KVAZAR**», а именно среда **kvazar-view**, где производилось моделирование необходимой для исследования гибридной структуры, представляющей собой систему графен-нанотрубка (УНТ /графен композит). Построена такая система в виде сегмента, представляющего собой супер-ячейку (см. рис. 2.1), в целях удобства осуществления первоначальных операций. Данная супер-ячейка транслировалась по осям X, Z (вектор трансляций также приведен на рис. 2.1).

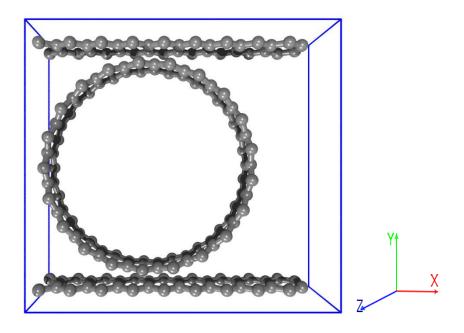


Рис. 2.1. Супер-ячейка с использованием УНТ, имеющей тип zigzag (20,0)

В композите использовался **тип трубок zigzag** (20,0), имеющих полупроводниковый тип проводимости.

Структура имеет диаметр нанотрубок: $d=1.639\,\mathrm{Hm}$. Расстояние a от крайних верхних атомов поверхности УНТ до атомов листа графена составляет $0.15\,\mathrm{Hm}$.

Была построена также система аналогичного вида (см. рис. 2.2), но с использованием углеродных нанотрубок металлического типа проводимости, а именно, типа zigzag (21,0).

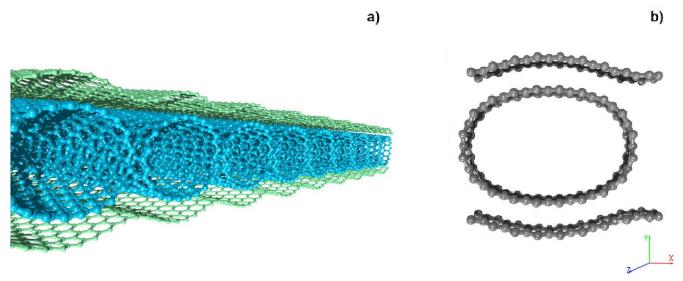
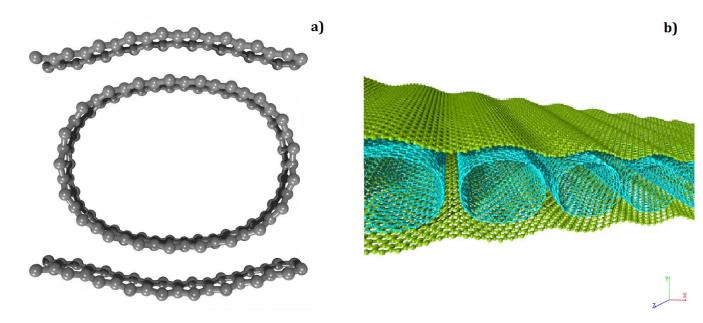


Рис. 2.2. Супер-ячейка с использованием УНТ типа zigzag (21,0)


Параметры структуры имеют следующие значения: диаметр нанотрубки d равен 1.639 нм; расстояние a между атомами графена и атомами на поверхности УНТ, также как и в первом случае, составляет 0.15 нм.

Для дальнейшего изучения исследуемых структур и нахождения их оптимальной геометрии по координатам (X, Z), был применен, изложенный ранее (п. 1.1.), метод сильной связи SCC-DFTB.

Структуры после оптимизации данным методом приняли вид, представленный на рисунках (2.3) и (2.4).

Рис. 2.3. Графен-нанотрубный композит из УНТ типа zigzag (20,0) с расстоянием между трубками 0.32 нм (а) и его супер-ячейка (b)

Рис. 2.4. Графен-нанотрубный композит из УНТ типа zigzag (21,0) с расстоянием между трубками 0.31 нм (b) и его супер-ячейка (a)

При трансляций помощи вектора ИЗ исходных супер-ячеек, определенными типами проводимости УНТ, были получены пространственные т.е. графен-нанотрубные композиты. Каждому композиту попрежнему соответствовали те же ТИПЫ проводимости нанотрубок: полупроводниковый и металлический.

Параметры вектора трансляций для двух случаев приведены в таблице 2.1.

Таблица 2.1

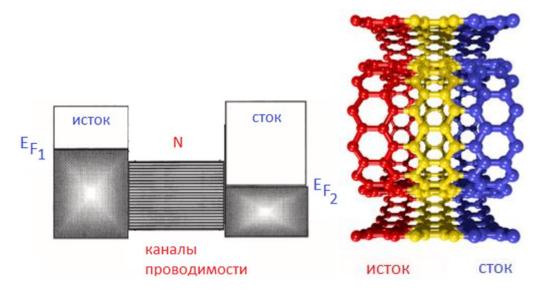
Тип УНТ	x, HM	z, HM
Zigzag	2.206	0.4308
(20,0)		
Zigzag	2.206	0.4308
(21,0)		

Подобных структур, как на рисунках (2.3) и (2.4), было получено в количестве 5 штук. Однако изображения оставшихся четырех не были включены в работу, так как они имели идентичные геометрические параметры и отличались только лишь расстоянием r между двумя трубками, которое увеличивалось с шагом в один гексагон (0,246 нм) – увеличивалась длина графеновых листов супер-ячеек в противоположном направлении оси X. Соответственно, параметр вектора трансляций x, для каждой последующей структуры, увеличивался на 0.246 нм. Ниже, в таблицах 2.2 и 2.3, описаны расстояния между УНТ и параметры вектора трансляций для каждого типа проводимости УНТ.

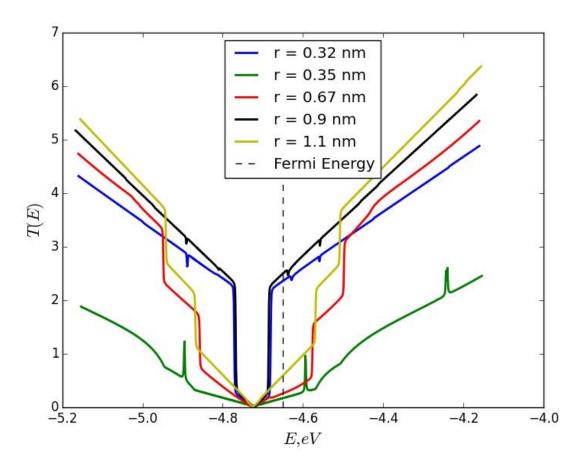
Таблица 2.2

Номер			
структуры	r iin	v IIM	7 HM
(Zigzag (20,0))	r, HM	X, HM	Z,HM
1	0.32	2.206	0.43085
2	0.566	2.452	0.4297
3	0.812	2.698	0.4288
4	1.058	2.944	0.4304
5	1.304	3.19	0.4296

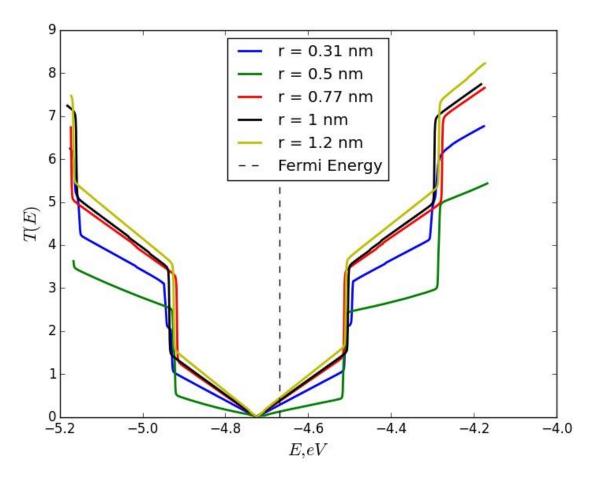
Таблица 2.3


Номер			
структуры	r um	v um	7 HM
(Zigzag (21, 0))	<i>r</i> , HM	X, HM	z, HM
1	0.31	2.206	0.43086
2	0.556	2.452	0.4298
3	0.802	2.698	0.4288
4	1.048	2.944	0.4306
5	1.294	3.19	0.4297

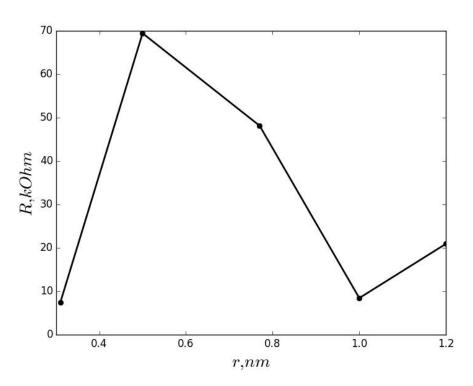
Используя формулу (1.3.1) для функции пропускания, перепишем ее в немного ином виде, для удобства осуществления расчетов

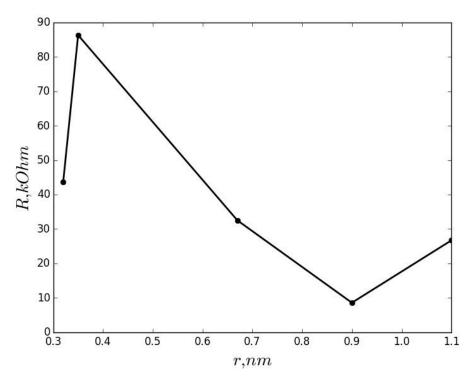

$$T(E) = Tr(\Gamma_{source}G_{channel}(E)\Gamma_{drain}G_{channel}^{+}(E)), \qquad (2.1)$$

где Γ_{source} и Γ_{drain} — функции Уширения (для каждого контакта) истока и стока;


 $G_{channel}(E)$ — функция Грина;

Воспользовавшись новой формулой (2.1), были построены функции пропускания для систем графен-УНТ с УНТ типа zigzag(20,0) и с УНТ типа zigzag(21,0), при различных расстояниях r между нанотрубками (см. рис. 2.5. и 2.6.).


Рис. 2.5. Расчет функции пропускания для системы графен-УНТ с УНТ типа zigzag(20.0) при различных расстояниях r между нанотрубками


Рис. 2.6. Расчет функции пропускания для системы с УНТ типа zigzag (21.0) при различных расстояниях r между нанотрубками

Расстояния r как на первом, так и на втором рисунках были округлены.

Для расчета электрического сопротивления R было использовано выражение (3.1.10). В соответствии с этой формулой были получены графики распределения электрического сопротивления систем графен-УНТ в зависимости от расстояния r между УНТ типа zigzag для киральности нанотрубок (20,0) и(21,0) (см. рис. 4.3.1 и 4.3.2).

Рис. 2.7. Электрическое сопротивление системы графен-УНТ в зависимости от расстояния *r* между УНТ типа *zigzag* для киральности (20,0)

Рис 2.8. Электрическое сопротивление системы графен-УНТ в зависимости от расстояния r между УНТ типа zigzag для киральности(21, 0)

ЗАКЛЮЧЕНИЕ

В настоящее время углеродные нанотрубки, графены начинают применять в нанокомпозитах и полевых транзисторах, источниках света и элементах нелинейной оптики. Между тем количество их новых потенциальных применений растет с каждым днем.

В ходе выполнения выпускной квалификационной работы:

- Была построена атомистическая модель композита УНТ-графен с учетом ван-дер-ваальсова взаимодействия между компонентами композита.
- Установлено, что электрическое сопротивление изменяется нелинейно и качественно совпадает для двух типов киральности УНТ, следовательно, не зависит от типов киральности УНТ.
- Проводящие свойства системы графен-нанотрубка зависят от массовой доли УНТ в композите.

СПИСОК ЛИТЕРАТУРЫ

- 1. Елецкий Ф.В. Углеродные нанотрубки и их эмиссионные свойства // УФН-2002.- т. 172.- С. 401-438.
- 2. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, «Electronic structure of chiral graphene tubules» // Appl. Phys. Lett., 1992, V. 60, P. 2204.
- 3. Елецкий Ф.В., «Углеродные нанотрубки» // УФН, 1997, Т. 167, № 9, С. 945.
- 4. Датта С. Квантовый транспорт: от атома к транзистору / -М.-Ижевск: НИЦ «Регулярная и хаотическая динамика». 2009. С. 25-42, 300-303, 315-325.
- 5. Дунаевский С.М., Розова М.Н., Кленкова Н.А., «Электронная структура графитовых нанотрубок» // ФТТ, Т. 39, № 6, 1997.
- 6. Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys Rev B 1998, 58, 7260.
- 7. Elstner, M.; Cui, Q.; Munih, P. et al. Modeling Zinc in Biomolecules with the Self Consistent Charge-Density Functional Tight Binding (SCC-DFTB) Method: Applications to Structural and Energetic Analysis // 2003 Wiley Periodicals, Inc. J Comput Chem 24: 565–581.
- 8. Булярский С.В. Углеродные нанотрубки: технология, управление свойствами, применение / ООО Стрежень. 2011. С. 1-7, 27-59.
- 9. Губин С.П., Ткачёв С.В. Графен и материалы на его основе // Наносистемы. 2010. Т. 2, №. 1-2. С. 100–109.
- 10.Ф.В. Елецкий и др.Графен: методы получения и теплофизические свойства // Успехи физических наук. 2011. Т. 181, № 3. С. 233–268.