Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нелинейной физики

ВЛИЯНИЕ ОТРАЖЕНИЙ ОТ УДАЛЕННОЙ НАГРУЗКИ НА ДИНАМИКУ ГИРОТРОНА

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студентки 2 курса 214 группы

направления 03.04.01 Прикладные математика и физика

факультета нелинейных процессов

Абрамовой Александры Викторовны

Научный руководитель

Flour Н.М. Рыскин

д.ф.-м.н., профессор

дата, подпись

Зав. кафедрой: <u>к.ф.-м.н., доцент</u> должность, уч. степень, уч. звание

подпись, дата

Е.Н. Бегинин инициалы, фамилия

Саратов 2018 год

Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нелинейной физики наименование кафедры

Влияние отражений от удаленной нагрузки на динамику гиротрона

АВТОРЕФЕРАТ МАГИСТРЕСКОЙ РАБОТЫ

Студентки 2 курса 214 группы

направления 03.04.01 «Прикладные математика и физика»_

код и наименование направления

факультета нелинейных процессов

наименование факультета

Абрамовой Александры Викторовны

фамилия, имя, отчество

Научный руководитель <u>профессор, д.ф.-м.н</u> должность, уч. степень, уч. звание

дата, подпись

Н.М. Рыскин

инициалы, фамилия

Зав. кафедрой: <u>доцент, к.ф.-м.н.</u> должность, уч. степень, уч. звание

дата, подпись

<u>Е.Н. Бегинин</u> инициалы, фамилия

Саратов 2018 г.

введение

Одной из важных и актуальных задач современной электроники является обеспечение стабильности частоты различных генераторов. Область применения электровакуумных источников сверхвысокочастотных (СВЧ) сигналов очень широка. Лишь некоторые примеры применения подобных приборов — это такие области, как радиолокация, системы связи, ускорительная техника и т.д.

На сегодняшний день одним из электровакуумных генераторов, представляющих наибольший интерес, является гиротрон [1-3]. Главное достоинство гиротронов — возможность работы на очень коротких длинах волн. В том числе, разработаны гиротроны в терагерцевом (ТГц) диапазоне (0.3 ТГц и выше), которые представляют особый интерес для различных приложений, прежде всего, для ядерно-магнитно-резонансной спектроскопии с динамической поляризацией ядер (DNP-NMR), для диагностики плазмы, биомедицинских исследований и др. [4-6]. Для этих приложений требуется умеренная мощность порядка 10-100 Вт, а длительность работы может составлять десятки часов. Не меньший интерес представляют мощные гиротроны, используемые в установках нагрева плазмы, где длительность импульса составляет десятки минут при мощности порядка 1 МВт и выше [7]. Очевидно, что для всех вышеперечисленных применений, стабильность частоты является крайне важным фактором.

Наряду с традиционными методами повышения стабильности частоты [8-11] в последние годы активно обсуждается использование различных [11]. синхронизации В видов том числе. вызывает интерес автосинхронизация запаздывающим сигналом, отраженным от удаленной нагрузки. Этот метод применялся ранее к другим вакуумным СВЧ приборам, например, к магнетронам [12-14]. Однако основной целью этих работ было подавление собственных шумов или увеличение мощности. В последнее время была высказана идея использования отражений от удаленной нагрузки для улучшения характеристик гиротрона, в частности, для подавления

2

стабилизации Была паразитных мод И частоты. развита теория автосинхронизации запаздывающим сигналом, результаты которой были подтверждены с помощью численного моделирования [11,15-17], а также экспериментально [17].¹ Однако в приведенных выше работах считалось, что собственная частота резонатора изменяется гиротрона, что может происходить, например, за счет термического расширения резонатора. Однако перестройка частоты генерации гиротрона в основном осуществляется за счет перехода к высшим продольным модам при вариации магнитного поля или ускоряющего напряжения [17]. Поэтому с практической точки зрения важно исследовать стабилизацию частоты при изменении этих параметров.

Целями данной работы является теоретический анализ влияния отражений на стабилизацию частоты гиротрона, в том числе, в режиме генерации высших продольных мод. Для достижения поставленной цели необходимо решить следующие задачи:

- развитие нестационарной теории гиротрона, находящегося под воздействием запаздывающего отраженного сигнала;
- получение аналитических оценок коэффициента стабилизации частоты гиротрона;
- сопоставление теоретических результатов с численным моделированием.

Научная новизна работы состоит в том, что в ней развита нестационарная модель гиротрона с фиксированной структурой ВЧ поля, находящегося под воздействием запаздывающего отраженного сигнала, которая позволяет получить простые аналитические оценки эффекта стабилизации частоты. Проведено численное моделирование, результаты которого хорошо согласуются с теореий.

¹ В том числе, эти исследования выполнялись при участии автора данной работы [16].

Научная и практическая значимость работы состоит в том, что полученные в ней результаты могут быть использованы для улучшения характеристик реальных гиротронов, используемых в приложениях, где необходима высокая стабильность частоты и ее плавная перестройка.

Результаты, полученные в ходе выполнения выпускной квалификационной работы, частично использовались при выполнении гранта РФФИ № 15-02-01798 и были опубликованы в работах [18-20].

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Работа состоит из трех глав. В главе 1 изложены основные принципы работы гиротрона. Представлены основные уравнения нестационарной теории гиротрона с фиксированной структурой поля [1]. В рамках этой теории уравнение движения электронов имеет вид

$$\frac{dp}{d\zeta} + i\left(\Delta_{H} + \left|p\right|^{2} - 1\right)p = i\left(p^{*}\right)^{n-1}Af_{s}(\zeta)$$

$$11$$

MERGEFORMAT()

Здесь p — безразмерный поперечный импульс электрона, A — безразмерная комплексная амплитуда поля рабочей моды, $f_s(\zeta)$ — функция, описывающая распределение поля в пространстве, n — номер циклотронной гармоники,

$$\zeta = \frac{\beta_{\perp}^2}{2\beta_{\parallel}} \frac{\omega_H}{c} z$$

— безразмерная продольная координата, $\beta_{\parallel} = v_{\parallel 0} / c$, $\beta_{\perp} = v_{\perp 0} / c$,

$$\Delta_{H} = \frac{2}{\beta_{\perp}^{2}} \frac{\omega_{0} - n \omega_{H}}{\omega_{0}}$$
 22* MERGEFORMAT ()

— циклотронная расстройка, ω_0 — опорная частота, которую логично выбрать равной собственной частоте рабочей моды.

Амплитуда А подчиняется уравнению возбуждения [1]

$$\frac{dA}{d\tau} + A = iI_s \int_{0}^{\mu} J(\zeta, \tau) f_s^*(\zeta) d\zeta$$
, 33* MERGEFORMAT

0

где

$$\tau = \frac{\omega_0 t}{2Q}$$

44* MERGEFORMAT ()

— безразмерное время, \mathcal{Q} — добротность резонатора,

$$I_{s} = 16 \left(\frac{e\mu_{0}}{4\pi m_{0}c\overline{j}} \left(\frac{n^{n+1}}{2^{n}n\overline{j}}\right)^{2} \frac{\beta_{\perp}^{2(n-2)}}{\beta_{\parallel}\gamma_{0}} \frac{QG_{ml}I_{b}}{N_{s}} \approx 0.94 \times 10^{4} \left(\frac{n^{n+1}}{2^{n}n\overline{j}}\right)^{2} \frac{\beta_{\perp}^{2(n-2)}}{\beta_{\parallel}\gamma_{0}} \frac{QG_{ml}I_{b}}{N_{s}}$$

$$55 \times \text{MERGEFORMAT}(0)$$

— безразмерный параметр тока, e и m_0 — заряд и масса покоя электрона, I_b — постоянный ток электронного пучка, c — скорость света,

$$G_{ml} = \frac{J_{mml}^2 \left(\frac{\mathbf{v}_{ml} R_b}{R_g \dot{\overline{\mathbf{j}}}} \right)}{J_m^2 (\mathbf{v}_{ml}) \left(\mathbf{v}_{ml}^2 - m^2 \right)} \qquad 6$$

66* MERGEFORMAT ()

— фактор связи пучка с рабочей модой TE_{ml} , m и l — азимутальный и радиальный индексы рабочей моды соответственно, J_m — функция Бесселя m-го порядка, v_{ml} — l-й положительный корень уравнения $J'_m(v) = 0$, R_b и R_g — радиусы электронного пучка и волновода, соответственно,

$$N_{s} = \int_{0}^{\mu} \left| f_{s}(\zeta) \right|^{2} d\zeta$$

77* MERGEFORMAT ()

— норма,

$$\gamma_{0} = \left(1 - \frac{v_{0}^{2}}{c^{2}}\right)^{-1/2} = \left(1 - \beta_{\perp}^{2} - \beta_{\parallel}^{2}\right)^{-1/2} \left[\overbrace{=}^{-1/2} \left[1 + \frac{\beta_{\perp}^{2}}{2}\right]^{-1/2} \left[\left[1 + \frac{\beta_{\parallel}^{2}}{2}\right]^{-1/2} \right] \right]$$

- релятивистский масс-фактор в начале пространства взаимодействия,

$$\mu = \frac{\beta_{\perp}^2}{2\beta_{\rm P}} \frac{\omega_{\rm H}L}{c}$$

— безразмерная длина резонатора. Знак «-» в 6 соответствует моде прямого вращения (т.е. в том же направлении, что и вращение электронов), «+» — моде встречного вращения.

Гармоника тока *J* в 3 вычисляется следующим образом:

$$J = \frac{1}{2\pi} \int_{0}^{2\pi} p^{n} d\phi_{0} \equiv \left\langle p^{n} \right\rangle, \qquad 88 \times \text{MERGEFORMAT} ()$$

где символом $\langle \mathsf{K} \rangle$ обозначено усреднение по начальным фазам.

Поперечный электронный КПД в сечении ζ определяется выражением

$$\eta(\zeta) = 1 - \frac{1}{2\pi} \int_{0}^{2\pi} \left| p(\zeta) \right|^2 d\varphi_0$$

Для системы уравнений 1, 3 в условиях одночастотных колебаний с частотой Ω , т.е. амплитуде поля зависящей от времени как $A \sim \exp(i\Omega \tau)$ и поперечном импульсе $p \sim \exp(i\Omega \tau/n)$ был получен интеграл энергии $|A|^2 = \frac{I_s \eta(\mu)}{2}$

1010* MERGEFORMAT ()

99* MERGEFORMAT ()

Линеаризацией уравнений 1, 3 с представлением поперечного импульса электрона в виде $p = a \exp(i\varphi)$, где a и φ — вещественные величины были получены условия самовозбуждения гиротрона.

Переписав уравнение возбуждения 3 в виде

$$\frac{dA}{d\tau} + A = I_s \Phi(A) A,$$
1111* MERGEFORMAT ()

где

$$\Phi = \frac{i}{A} \int_{0}^{\mu} J(\zeta, \tau) f_{s}^{*}(\zeta) d\zeta$$

1212* MERGEFORMAT ()

— электронная восприимчивость [2].

Вводя величину, имеющую такой же смысл, что и коэффициент электронного взаимодействия в теории клистрона

$$M(\zeta) = \int\limits_{0}^{\zeta} f_s^*(\zeta') e^{in\Delta_H \zeta'} d\zeta'$$

1313* MERGEFORMAT

0

были получены выражения

$$1 = I_s \Phi',$$

$$\Omega = I_s \Phi'',$$

1414* MERGEFORMAT ()

где Ф', Ф" — вещественная (активная) и мнимая (реактивная) составляющие электронной восприимчивости. Из второго уравнения системы 14 следует выражение для расчета частоты генерации

$$\Omega = \frac{\Phi''}{\Phi'}$$

1515* MERGEFORMAT ()

Для теоретического анализа процессов, связанных с возбуждением различных продольных мод было выбрано синусоидальное распределение поля в резонаторе

$$f_s = \sin\left(\frac{\pi q\zeta}{\mu \, \overline{j}}\right)$$

1616* MERGEFORMAT ()

q = 1, 2, K — номер продольной моды.

Во второй главе рассматривалось влияние отражений от удаленной нагрузки на условия самовозбуждения гиротрона. Была выбрана модель

 Y_L при помощи бездисперсионной длинной линии (см. рис.1), представленного в виде эквивалентного колебательного контура, в который включен активный элемент с отрицательной дифференциальной проводимостью Y_e , отвечающей

за взаимодействие пучка с полем [2,3].

Рис. 1. Схема автогенератора типа Ван дер Поля с отражением от нагрузки

Считаем, что линия передачи бездисперсна и волны в ней распространяются со скоростью c , тогда напряжения $^{V_{-}}$ и $^{V_{+}}$ излученной и отраженной волн связаны соотношением

$$V_{-}(t)\big|_{z=0} = \Gamma V_{+}(t-t_{d})\big|_{z=0}$$
17017* MERGEFORMAT

(.)

где

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$$

18018* MERGEFORMAT(.)

— коэффициент отражения от нагрузки,
$$Z_0 = 1/Y_0$$
 $Z_L = 1/Y_L$ — импедансы

линии и нагрузки соответственно, $t_d = 2l/c$ — время прохождения сигнала по

петле обратной связи. Считая контур высокодобротным, то есть $Q_0, Q_e >> 1$, и применяя метод усреднения Ван дер Поля [4], получаем укороченное уравнение для медленно меняющейся амплитуды.

$$\frac{dA}{d\tau} - \left(\sigma - \left|A\right|^{2}\right)A = \frac{2\Gamma Q_{L}}{Q_{e}}e^{-i\psi}A_{+}(\tau - \tau_{d})$$
1919*

MERGEFORMAT()

Применяя данную модель к полученной в первой главе системе уравнений 14, получаем систему уравнений, показывающую влияние отражений на условия самовозбуждения гиротрона

$$1 = I_{s}\Phi' + \frac{2\Gamma\cos\vartheta + 2\Gamma^{2}}{1 + \Gamma^{2} + 2\Gamma\cos\vartheta},$$

$$\Omega = I_{s}\Phi'' - \frac{2\Gamma\sin\vartheta}{1 + \Gamma^{2} + 2\Gamma\cos\vartheta},$$

2020* MERGEFORMAT

()

и выражение для частоты колебаний

$$\Omega = \frac{\Phi''}{\Phi'} \left(\frac{1 - \Gamma^2}{1 + \Gamma^2 + 2\Gamma \cos \vartheta} - \frac{2\Gamma \sin \vartheta}{1 + \Gamma^2 + 2\Gamma \cos \vartheta} - \frac{2\Gamma \sin \vartheta}{1 + \Gamma^2 + 2\Gamma \cos \vartheta} \right).$$
(2121)*

MERGEFORMAT()

Был введен коэффициент стабилизации частоты как

$$K = \frac{d\Omega_0/d\theta}{d\Omega/d\theta}$$

2222* MERGEFORMAT ()

который в центре зоны генерации, где $\Omega_0 \approx 0$, $\cos \vartheta \approx 1$ $\sin \vartheta \approx 0$ приминает простой вид

$$K \approx \frac{1 + 2\Gamma\tau(1+\Gamma)^2}{(1-\Gamma^2)(1+\Gamma)^2}$$

2323* MERGEFORMAT ()

В третьей главе проведен анализ зависимостей 20 при различных параметрах коэффициента отражения, фазы и времени задержки отраженного сигнала. Представлены результаты проведения численного моделирования, в ходе которого методом Рунге-Кутты 4-го порядка решались уравнения 1 и 3. На рис. 3 представлены зависимости безразмерного параметра стартового тока и нормированной частоты генерации гиротрона от угла пролета. Прерывистыми линиями обозначены зависимости в отсутствие отражений, сплошными линиями – зависимости при коэффициенте отражения $\Gamma = 0.5$, времени запаздывания $\tau = 0.5$ и фазе отраженного сигнала $\Psi = 0$. Кружками обозначены результаты численного моделирования. Из рисунка видно, что

при увеличении отражений, стартовый ток снижается, зоны генерации расширяются, а зависимости частоты от угла пролета становятся более пологими, что свидетельствует о стабилизации частоты

10

Рис. 2. Зоны генерации гиротрона (а) и зависимость нормированной частоты генерации гиротрона от угла пролета (б) с учетом (сплошные линии), и без учета отражений (штриховые линии), кружками обозначены результаты численного моделирования, квадратами — границы зон жесткого возбуждения. Номера продольных мод указаны на рисунке.

В третьей главе было подробно исследовано поведение данных зависимостей при различных значениях коэффициентах отражения, фазе отраженного сигнала и времени запаздывания. Были найдены значения параметров, при которых появлялись зоны мультистабильности. Также были получены зависимости электронного КПД и частоты генерации от угла пролета при фиксированном значении стартового тока. Было обнаружено, что при наличии отражений появляется зона жесткого возбуждения, в которую при генерации «затягиваются» зависимости КПД и частоты от угла пролета.

ЗАКЛЮЧЕНИЕ

В ходе выполнения выпускной квалификационной работы были получены следующие основные результаты.

- Развита модель, позволяющая аналитически исследовать влияние сигнала, отраженного от удаленной нагрузки, на колебания гиротрона. Модель использует аналитическое вычисление функции электронной восприимчивости в приближении малого сигнала. Модель позволяет рассмотреть влияние отражений на стартовый ток и частоту генерации гиротрона и получить простые аналитические оценки для коэффициента стабилизации частоты. Показано, что эти оценки хорошо согласуются с результатами численного моделирования.
- 2. С помощью развитой модели рассчитаны зоны генерации и получены зависимости частоты генерации гиротрона от угла пролета. Показано, что увеличение коэффициента отражения способствует стабилизации частоты и расширению зон генерации. Однако при увеличении значений коэффициента отражения и времени запаздывания до больших значений достаточно зависимости становятся мультистабильность, неоднозначными И появляется что может привести к перескокам частоты генерации.
- 3. Обнаружено что оптимальными значениями фазы отраженного сигнала

 $\psi = 2\pi n$, что соответствует возвращению отраженного сигнала в резонатор гиротрона точно в фазе. При этом величина стартового тока уменьшается, зона генерации расширяется, а наклон зависимости частоты от угла пролета уменьшается, т.е. можно говорить

$$\psi = 2\pi n + \pi$$
, соответствующее

0

возращению отраженного сигнала в резонатор в противофазе, наоборот, приводят к увеличению стартового тока, а зависимость частоты от угла пролета становится более крутой.

4. Показано, что результаты теоретического анализа хорошо согласуются с результатами численного моделирования на основе нестационарной теории гиротрона с фиксированной структурой ВЧ поля. Кроме того, численное моделирование позволяет исследовать ряд нелинейных эффектов, которые не могут быть описаны с помощью развитой теоретической модели. В частности, имеется область жесткого возбуждения колебаний, где наблюдаются наиболее высокие значения КПД. В области жесткого возбуждения амплитуда и частота колебаний меняется слабо, поэтому зависимости частоты от угла пролета, построенные при постоянном токе пучка, являются более пологими чем в теоретической модели.

ЛИТЕРАТУРА

- Nusinovich G.S., Thumm M.K.A., Petelin M.I. The gyrotron at 50: historical overview //J. Infrared Millim. Terahertz Waves. 2014. Vol. 35, No. 4. P. 325– 381.
- 2 Nusinovich G.S. Introduction to the Physics of Gyrotrons, Baltimore, London: The Johns Hopkins University Press, 2004.
- 3 Трубецков Д.И., Храмов А.Е. Лекции по сверхвысокочастотной электронике для физиков. Т. 2. М.: Физматлит, 2004.
- 4 Idehara T., Saito T., Ogawa I., Mitsudo S., Tatematsu Y., Sabchevski S. The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range A review of novel and prospective applications // Thin Solid Films. 2008. Vol. 517, No. 4. P. 1503–1506.
- 5 Glyavin M.Y., Idehara T., Sabchevski S.P. Development of THz gyrotrons at IAP RAS and FIR UF and their applications in physical research and high-power THz technologies // IEEE Trans. Terahertz Sci. Technol. 2015. Vol. 5, No. 5. P. 788-797.
- 6 Nanni E.A., Barnes A.B., Griffin R.G., Temkin R.J. THz dynamic nuclear polarization NMR // IEEE Trans. Terahertz Sci. Technol. 2011. Vol. 1, No. 1. P. 145-163.
- 7 Thumm M. Recent advances in the worldwide fusion gyrotron development // // IEEE Trans. Plasma Sci. 2014. Vol. 42, No. 3. P. 590-599.
- 8 Khutoryan E.M., Idehara T., Kuleshov A.N., Ueda K. Gyrotron output power stabilization by PID feedback control of heater current and anode voltage // J. Infrared Millim. Terahertz Waves. 2014. Vol. 35, No. 12. P. 1018-1029.

- 9 Khutoryan E.M., Idehara T., Kuleshov A.N., Tatematsu Y., Yamaguchi Y., Matsuki Y., Fujiwara T. Stabilization of gyrotron frequency by PID feedback control on the acceleration voltage // J. Infrared Millim. Terahertz Waves. 2015. Vol. 36, No. 12. P. 1157–1163.
- 10 Fokin A., Glyavin M., Golubiatnikov G., Lubyako L., Morozkin M., Movschevich B., Tsvetkov A., Denisov G. High-power sub-terahertz source with a record frequency stability at up to 1Hz // Scientific Reports. 2018. Vol. 8, Art. no. 4317.
- 11 Новожилова Ю.В., Денисов Г.Г., Глявин М.Ю., Рыскин Н.М., Бакунин В.Л., Богдашов А.А., Мельникова М.М., Фокин А.П. Стабилизация частоты гиротрона под влиянием внешнего монохроматического сигнала или отраженной от нагрузки волны: обзор // Изв. вузов. Прикладная нелинейная динамика. 2017. Т. 25, № 1. С. 4-34.
- 12 Choi J.J, Choi G.W. Experimental observation of frequency locking and noise reduction in a self-injection-locked magnetron // IEEE Trans. Electron Devices 2007. Vol. 54, No. 12. P. 3430–3432
- 13 Baek S., Balk M., Kim K., Kim H., Choi J. Unique multi-physics approach of self phase locked magnetron (SPLM) system with CST STUDIO SUITE // Proc. 14th IEEE Int. Vac. Electron. Conf., Paris, France 2013. P. 1–3.
- 14 Bliokh Y.P., Krasik Y.E., Felsteiner J. Self-injection-locked magnetron as an active ring resonator side coupled to a waveguide with a delayed feedback loop // IEEE Trans. Plasma Sci. 2012. Vol. 40, No. 1. P. 78–82.
- 15 Глявин М.Ю., Денисов Г.Г., Кулыгин М.Л., Новожилова Ю.В. Стабилизация частоты гиротрона отражением от резонасной и нерезонансной нагрузки // Письма в ЖТФ. 2015. Т. 41, № 13. С. 25–32.
- 16 Melnikova M.M., Rozhnev A.G., Ryskin N.M., Tyshkun A.V., Glyavin M.Y., Novozhilova Y.V. Frequency stabilization of a 0.67-THz gyrotron by selfinjection locking // IEEE Trans. Electron Devices. 2016. Vol. 63, No. 3. P. 1288-1293.
- 17 Khutoryan E.M., Idehara T., Melnikova M.M., Ryskin N.M., Dumbrajs O. Influence of reflections on frequency tunability and mode competition in the second-harmonic THz gyrotron // J. Infrared, Millim. Terahertz Waves. 2017. Vol. 38, No. 7. P. 824-837.
- 18 Тышкун А.В., Рыскин Н.М. Стабилизация частоты гиротрона при воздействии сигнала, отраженного от нагрузки // «Наноэлектроника, нанофотоника и нелинейная физика»: тезисы докладов XI Всерос. конф. молодых ученых. Саратов: Изд-во «Техно-Декор», 2016. С. 208-209.
- 19 Adilova A.B., Gerasimova S.A., Melnikova M.M., Tyshkun A.V., Rozhnev A.G., Ryskin N.M. Using phase locking for improving frequency stability and tunability of THz-band gyrotrons // Proc. SPIE. 2018. Vol. 10717. Art. no. 135.
- 20 Melnikova M.M., Tyshkun A.V., Rozhnev A.G., Ryskin N.M. Theoretical analysis of gyrotron self-injection locking by delayed reflection // Proc. 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 9-14 Sept. 2018, Nagoya, Japan (в печати).
- Петелин М.И., Юлпатов В.К. Мазеры на циклотронном резонансе. Лекция 2. Укороченные уравнения автоколебаний МЦР-монторона // Лекции по электронике СВЧ. 3-я Зимняя школа-семинар инженеров. Кн. IV. Саратов: Изд-во СГУ, 1974. С. 144-178.

- Новожилова Ю.В., Рыскин Н.М., Чумакова М.М. Влияние отражения от 2. конкуренцию удаленной нагрузки на мод В гиротроне с квазиоптическим выходным преобразователем // Изв. вузов. Прикладная нелинейная динамика. 2012. Т. 20, № 6. С. 136-147.
- Chumakova M.M., Usacheva S.A., Glyavin M.Y., Novozhilova Y.V., Ryskin N.M. Mode competition in a two-mode gyrotron with delayed reflections // IEEE Trans. Plasma Sci. 2014.Vol. 42, No. 8. P. 2030–2036.
- Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания.
 М.: Физматлит, 2002. 292 с.