Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра полимеров на базе ООО «АКРИПОЛ»

Промышленная безопасность получения водного раствора полиакриламида

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента (ки)	<u>4</u> курса	441 группы	
направления	код и наименов	осферная безопасность ание направления, специальност нститута химии	
	Ларионово	й Дарьи Александровны	oI
Научный руковод доцент, к.в.н., доц должность, уч. ст., уч. зв.	ент	подпись, дата	<u>Т.А. Байбурдов</u> инициалы, фамилия
Заведующий кафе д.х.н., профессор должность, уч. ст., уч. зв	дрой	подпись, дата	А.Б. Шиповская инициалы, фамилия

Введение

Промышленная безопасность — одно из важнейших направлений техносферной безопасности. Наряду с вопросами экологии, охраны труда решение вопросов промышленной безопасности на предприятиях позволит минимизировать технологическое воздействие на природу, тем самым обеспечивая сохранность жизни и здоровья человека.

Среди техногенных аварий следует выделить аварии на химически опасном объекте. Основными причинами аварий являются: высокий уровень (технологического производственных фондов износа основных оборудования); несовершенство технологий производства; халатность промышленного персонала при сливных операциях; отсутствие современных систем управления технологическими процессами и противоаварийной защиты. Эти причины могут привести к техногенной катастрофе, массовому отравлению и гибели людей, заражению сельскохозяйственных животных, экологическому кризису и экономическому ущербу. С развитием науки и техники потребность людей в продуктах химического производства возросла. В Российской Федерации насчитывается более 3000 ХОО-это почти 60% от доли ХОО стран СНГ.

На территории Саратовской области функционирует 89 химически опасных объектов, одним из которых является ООО «АКРИПОЛ». Предприятие использует в своих технологических процессах следующие опасные химические вещества: нитрил акриловой кислоты, акриламид, уксусная кислота, формалин, перекись водорода, акролеин.

Саратовский химический завод акриловых полимеров ООО «АКРИПОЛ» является единственным предприятием в России, которое выпускает различные марки порошкообразного полиакриламида и водные растворы полимера: Н 600, А 605, А 305 и А 835.

Также организация производит диспергаторы на основе полимеров акриловой кислоты, акриламида и других мономеров; ацетат хрома для сшитых полимерных и вязко-упругих систем; ацетат аммония; полифенол для изоляционных эпоксидных смол; акриловые эмульсии, клеи, лаки.

Целью представленной работы является анализ состояния промышленной безопасности в цехе по производству полимеров и сополимеров акриловой и метакриловой кислот и их производных на примере установки получения водного раствора полиакриламида марки Н 600.

Задачи работы:

- 1) Изучить законодательные нормативно-правовые акты, документацию ООО «АКРИПОЛ
- 2) Рассчитать избыточное давление при сгорании паро-воздушной смеси акрилонитрила при аварийной разгерметизации Е-102.
- 3) Разработать предложения по уменьшению риска аварии на предприятии

Раздел 1. Общие сведения о полиакриламиде

1.1 Способы получения ПАА

Рассмотрим основные промышленно важные технологии получения полимеров акриламида.

А) Технология гомогенной полимеризации акриламида.

К гомогенной полимеризации относятся процессы полимеризации в растворителях, в которых растворимы и мономер, и полимер. Для полиакриламида (ПАА) таких растворителей немного: вода, формамид, уксусная и муравьиная кислоты, диметилсульфоксид (ДМСО) и некоторые водно – органические смеси.

Получение полимеров акриламида путем гомогенной полимеризации АА в водных растворах является исторически первым, наиболее простым и экологически чистым методом. Полимеры, синтезируемые этим методом, получают в виде гелей с различной концентрацией полимера. Растворы полимеров ПАА с концентрацией менее 10%, используют как товарный продукт.

Б) Гетерогенная полимеризация.

Среди методов гетерогенной полимеризации акриламида важное практическое значение имеют два способа: суспензионный и эмульсионный процессы. Редко в промышленном масштабе встречается гетерофазная (осадительная) полимеризация акриламида.

Суспензионную (со)полимеризацию проводят в водных растворах смеси мономеров (с концентрацией 30 - 50%), диспергированных при перемешивании в несмешивающихся с водой органических растворителях, в присутствии стабилизаторов и водорастворимых инициаторов. В качестве гидрофобного органического растворителя используют: бензол, толуол, циклогексан, гептан, керосин , смесь парафинов и другие насыщенные углеводороды. В качестве стабилизаторов суспензии используют неионогенные ПАВы

Эмульсионную (со)полимеризацию AA проводят, используя в качестве дисперсионной среды аналогичные для суспензионной полимеризации гидрофобные органические растворители. В качестве эмульгаторов используют неионогенные эмульгаторы с ГЛБ 1-6.

1.2. Применение полиакриламида

Полимеры АА обладают уникальным комплексом полезных свойств и широко используются в различных областях техники и технологии.

Эффективность применения полимеров AAопределяется ИΧ характеристиками. Основное применение неионных полимеров – очистка природных и сточных вод и обезвоживание осадков в целлюлозно-бумажной промышленности, анионных полимеров – водообработка, флокуляция хвостов флотации руд, обогащение и регенерация полезных ископаемых и нефти, обработка бумаги и шлихтование текстильных материалов (создание на поверхности нити эластичной И прочной пленки высокой водопоглощающей способностью, которая закрепляет выступающие волокна на стволе нити и улучшает процесс ткачества и свойства нити), катионных полимеров – обработка бумаги и флокуляция биологических клеток.

Раздел 2. Сведения об опасных веществах, которые участвуют в технологических процессах производства полиакриламида

Акрилонитрил

Нитрил акриловой кислоты служит исходным сырьем для получения акриламида, который в свою очередь служит сырьем для получения полиакриламида.

Класс опасности НАК - 2.

ПДК НАК в воздухе рабочей зоны:

- максимально-разовая -1,5 мг/м³;
- среднесуточная -0.5 мг/м^3 .

Смесь паров НАК с воздухом взрывоопасна. Концентрационные пределы распространения пламени составляют 3,05-17,5% об. Категория взрывоопасной смеси IIB – T2.

Акриламид

Важным промышленным акриловым мономером является акриламид. Акриламид представляет собой кристаллическое вещество, имеет температуру плавления 84,2... 84,8°C, его плотность при 30°C составляет 1,122г/см³. Акриламид хорошо растворим в воде, метаноле, этаноле, ацетоне, хлороформе и др.полярных растворителях; мало растворим в бензоле и гептане.

Вещество 2 класса опасности. ПДК паров в воздухе рабочей зоны составляет 0,2 мг/м³, в атмосферном воздухе - 0,005 мг/м³. При вдыхании паров: вялость, резкая слабость, сонливость, головокружение, першение в горле, кашель, боль в груди, нарушение координации движений, снижение реакции на внешние раздражители, парезы конечностей; при вдыхании порошка: слезотечение, насморк, жжение и зуд кожи.

Раздел 3. Технология производства водного раствора полиакриламида

3.1. Технология получения водного раствора акриламида из акрилонитрила (НАК)

Технология получения акриламида состоит из следующих стадий

- прием и подготовка сырья и вспомогательных материалов
- прием НАК из автоцистерны в приемные емкости
- подготовка парового конденсата
- синтез акриламида

3.2. Получение водного раствора полиакриламида из водного раствора акриламида

Этапы производства водного раствора полиакриламида:

- прием сырья и вспомогательных материалов
- приготовление растворов инициаторов
- приготовление реакционной смеси в реакторе поз. Р-306
- полимеризация
- выгрузка готового продукта

Раздел 4. Характеристика опасностей производства

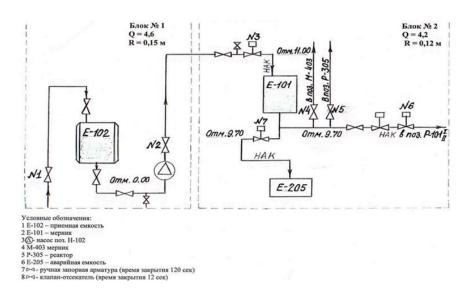
Опасность производства заключается в том, что для производства водного раствора полиакриламида используется акриламид, который в свою очередь изготавливается из акрилонитрила.

Рассмотрим блок №1.

Блок №1. Узел приема и расхода НАК на отм. 0.00

Первый блок – прием, хранение и расход НАК.

Оборудование блока:


емкость поз. Е-102,

насос поз. Н-102.

Границами блока являются:

- ручная запорная арматура №1 на линии приема НАК в емкость поз. Е-102 находится вне производственного помещения корпуса;
- ручная запорная арматура №2 на линии нагнетания насоса поз. H-102 находится на отм. 0.00 корпуса 393.

Блок №1 представлен на рисунке 1.

Блок №1. Узел приема и расхода НАК на отм. 0.00

Раздел 5. Меры безопасности при ведении технологического процесса и средства индивидуальной защиты на предприятии

В целях обеспечения безопасных условий работы, а также для предохранения оборудования и зданий от пожаров и разрушений предусмотрен ряд мероприятий по безопасному ведению процесса:

- технологические процессы ведутся в соответствии с настоящим регламентом и рабочими инструкциями, разработанными на основании регламента;
- управление большинством процессов и контроль параметров технологического режима осуществляется дистанционно с помощью приборов на щите КИП, что уменьшает необходимость пребывания обслуживающего персонала у аппаратов;
- запрещается работать на неисправном оборудовании и неисправным инструментом;
- все трубопроводы и оборудование, имеющие температуру стенки выше 450C, теплоизолированы;
- фланцевые соединения на аппаратах поз. E-101, E-102, на насосе поз. H-1022, трубопроводах с НАК окожушены и опломбированы;
- не допускается установка и эксплуатация электрооборудования в исполнении, не соответствующем классу взрывоопасной зоны;
- производственные помещения оснащены первичными средствами пожаротушения в соответствии с действующими нормами; все противопожарное оборудование содержится в исправном и чистом состоянии, доступ к нему должен быть свободным;
- все операции технологического процесса ведутся при включенной вытяжной и приточной вентиляции;

В целях безопасности рабочий персонал обеспечивается необходимыми средствами защиты согласно «Перечню бесплатной выдачи спецодежды, специальной обуви и других средств защиты» при поступлении на работу и по мере износа (в соответствии с нормами носки).

Раздел 6. Расчет избыточного давления при сгорании паро-воздушной смеси акрилонитрила при аварийной разгерметизации E-102

Акрилонитрил является токсичным, пожаро- и взрывоопасным веществом. Данный расчет позволит определить избыточное давление при сгорании паро-воздушной смеси при аварийной разгерметизации приёмной ёмкости акрилонитрила и оценить нанесённый при этом ущерб. При расчете были использованы максимально возможные величины, которые могут привести к самым худшим последствиям для предприятия. Исходя из расчетов будут предложены мероприятия по уменьшению риска этой аварии.

1) Найдем стехиометрический коэффициент кислорода в реакции

$$\beta = n_c + \frac{n_H}{4},$$

где $n_{c,} n_{H}$ – число атомов C, H в молекуле горючего

$$\beta = 3 + \frac{3}{4} = 3,75$$

2) Найдем стехиометрическую концентрацию паров ЛВЖ

$$C_{cr} = \frac{100}{1 + 4,84\beta}, \%$$

$$C_{ct} = \frac{100}{1 + 4.84 \cdot 3.75} = 5.22, \%$$

3) Найдем плотность пара горючего вещества

$$\rho_{\text{г.п.}} = \frac{M}{V_0 (1 + 0.00366 \cdot t_p)}$$
, $\kappa \Gamma / M^3$

где М- молярная масса, кг·кмоль⁻¹; М (C_3H_3N)=53 кг·кмоль⁻¹

 V_0 — мольный объем, равный 22,413 м³·кмоль⁻¹;

 t_p – расчетная температура, °С

В качестве расчетной температуры следует принимать максимально возможную температуру воздуха в данном помещении в соответствующей климатической зоне или максимально возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры по каким-либо причинам определить не удается, допускается принимать ее равной 61 °C;

$$\rho_{\Gamma.\Pi.} = \frac{53}{22.413 + 0.00366 \cdot 61} = 2,34 \text{ , K}\Gamma/\text{M}^3$$

4) Найдем избыточное давление для акрилонитрила

$$\Delta P = (P_{\text{max}} - P_0) \cdot \frac{\text{mZ}}{V_{\text{CB}} \rho_{\text{г.п.}}} \cdot \frac{100}{C_{\text{cr}}} \cdot \frac{1}{K_{\text{H}}}$$
, κΠα

где P_{max} — максимальное давление в месте взрыва, при отсутствии данных допускается принимать равным 900 кПа;

 P_0 – начальное давление, допускается принимать равным 101 кПа;

т – масса паров ЛВЖ, кг;

Z – коэффициент участия паров во взрыве. Значение данного коэффициента является табличным, для акрилонитрила принимается равным 0,3;

 $V_{\text{cb}}-$ свободный объём помещения, м 3 ;

 $p_{\text{г.п.}}$ — плотность пара горючего вещества при расчёте температуры в помещении, $\Gamma K/m^3$;

Кн – коэффициент, учитывающий негерметичность помещения и нестабильность процесса горения газопаровоздушной смеси, допускается принимать равным 3;

$$\Delta P = (900 - 101) \cdot \frac{38 \cdot 0.3}{3040.8 \cdot 2.34} \cdot \frac{100}{5.22} \cdot \frac{1}{3} = 10.4$$
 κΠα

По таблице 1 можем найти степень повреждения зданий избыточным давлением.

Таблица 1. Типичные предельно допустимые значения избыточного давления с точки зрения повреждения зданий

Степень поражения	Типичные предельно допустимые	
	значения избыточного давления, кПа	
Полное разрушение зданий	100	
50%-ное разрушение зданий	53	
Средние повреждения зданий	28	
Умеренные повреждения зданий	12	
(повреждение внутренних		
перегородок, рам, дверей и т.п.)		
Нижний порог повреждения человека	5	
волной давления		
Малые повреждения (разбита часть	3	
остекления)		

Благодаря полученным расчетам можно сделать вывод, что предельно допустимое значение избыточного давления с точки зрения повреждения зданий равно 10,4 кПа. Это значение стоит в пределах от нижнего порога повреждения человека волной давления и умеренными повреждениями зданий (повреждение внутренних перегородок, рам, дверей и т.п.). Для минимизирования опасности взрыва следует внести предложения по внедрению мер, направленных на уменьшение риска аварии.

Раздел 7. Предложения по внедрению мер, направленных на уменьшение риска авари

Проанализировав сценарии развития ЧС при различных авариях можно заключить, что Блок №1 является одним из наиболее опасных. Нахождение большого количества взрыво-пожароопасного вещества в Е-102 создаёт потенциальную угрозу персоналу, оборудованию и зданию. Современные технические возможности позволяют осуществить поставку НАК в цех ООО «АКРИПОЛ» непосредственно по трубопроводу через узел учёта. Тем самым будут исключены стадии транспортировки, слива и хранения НАК в Е-102. Это позволит снизить риск возникновения ЧС на предприятии.