Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра физической химии

Физико-химические свойства композитных сорбентов на основе природного бентонита и углерода, полученного пиролизом целлюлозы в условиях каталитической карбонизации

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студентки 2 курса 251 группы направления 04.04.01 - «Химия»

Института химии

Тарасовой Наталии Сергеевны

Научный руководитель

профессор, д.х.н., профессор

(4. 86. 18

И.А. Казаринов

Зав. кафедрой

доктор хим. наук, профессор

И.А. Казаринов

ВВЕДЕНИЕ

К настоящему времени качество воды в природных источниках существенно ухудшилось. Особую группу загрязнителей гидросферы составляют металлы и часть органических веществ, многие из которых весьма токсичны.

Адсорбция является простым и пригодным для практической реализации способом глубокой очистки природных и сточных вод. Он основан на фильтрации воды через пористые зернистые материалы – сорбенты, обладающие большой внутренней поверхностью, благодаря чему из воды извлекаются содержащиеся в ней примеси.

Стремительно возрастающая потребность в чистой воде, ограниченность ее запасов и удорожание процесса водоочистки приводят к необходимости создания новых сорбентов для очистки воды. В результате этого значительно увеличился интерес к созданию новых экологически безопасных сорбентов на основе природных глинистых материалов и алюмосиликатов.

Целью данного исследования было получение композитных сорбентов на основе природного бентонита, модифицированного пиролитическим углеродом в условиях каталитической графитизации органических отходов (древесных опилок), изучение их физико-химических и адсорбционных свойств.

Данная работа состоит из трех глав.

Глава 1: Литературный обзор

Глава 2: Экспериментальная часть

Глава 3: Обсуждение результатов.

Основное содержание работы

1. Объекты исследования

В этом разделе представлены композитные сорбенты на основе бентонита и углерода, полученного в условиях низкотемпературной каталитической карбонизации в процессе пиролиза древесных опилок.

Объектами исследования являлись следующие образцы сорбентов:

- образец №1 (исходный порошок бентонита);
- *образец №2* (исходный порошок бентонита с активированным углем, для получения угля древесина подвергалась сушке при t = 80°C и отжигу при постоянной t = 550°C в течение 1 часа в инертной атмосфере);
- *образец №3* (гранулированный бентонит с активированным углем, для получения угля древесина подвергалась сушке при t = 80°C и отжигу при постоянной t = 550°C в течение 1 часа в инертной атмосфере);
- *образец №4* (исходный порошок бентонита с активированным углем в присутствии катализатора $\operatorname{FeCl}_3(0,25\Gamma; 0,5\Gamma; 0,75\Gamma$ на 2Γ бентонита), для получения угля древесина подвергалась сушке при $t = 80^{\circ}\mathrm{C}$ и отжигу при $t = 550^{\circ}\mathrm{C}$ в течение 1 часа в инертной атмосфере);
- *образец* №5 (гранулированный бентонит с активированным углем в присутствии катализатора $FeCl_3$ (0,25г; 0,5г; 0,75г на 2г бентонита), для получения угля древесина подвергалась сушке при t = 80°C и отжигу при t = 550°C в течение 1 часа в инертной атмосфере).

2. Методы исследования

2.1 Методика получения исследуемых образцов сорбентов

Взвешиваем 2г бентонита на электронных весах, затем 1г опилок и катализатор соответствующей концентрации. Полученную смесь переносим в тигель, смачиваем дистиллированной водой, хорошо перемешиваем и ставим в сушильный шкаф на сутки (при t = 80°C). По прошествии времени, достаем тигель из сушильного шкафа и помещаем в муфельную печь, где

образец отжигается в течение 1 часа в инертной атмосфере при t = 550°C. Готовый образец охлаждаем, после чего можем проводить дальнейшие исследования. Такой образец будет представлять собой смесь бентонита и активированного угля.

На аналитических весах взвешиваем 2г опилок, которые подвергаются пиролизу в муфельной печи в течение 1 часа в инертной атмосфере при $t=550^{\circ}$ С. После чего образец охлаждается и смешивается с 2г бентонита, смачивается дистиллированной водой и подвергается гранулированию под прессом. Затем оставляется в сушильном шкафе на сутки (при $t=80^{\circ}$ С). Такой образец будет представлять собой гранулированный бентонит с активированным углем.

2.2 Методы исследования

2.2.1 Определение влагосодержания

Простым методом определения влагосодержания активного угля является сушка в сушильном шкафу в соответствии с DIN 19603 [20]. Навески исследуемых образцов сушат в течение 2 ч при 120±3°С в сушильном шкафу. После охлаждения в эксикаторе взвешивают и определяют потерю массы. По убыли массы рассчитывают влагосодержание.

2.2.2 Определение содержания золы

Зольность активных углей определяют прокаливанием навески, помещенной в фарфоровый тигель, в электрической муфельной печи. Хорошо воспроизводимые значения получают по способу DIN 51719 [21] при снижении рекомендованной для кокса температуры 815 °C до 600—625 °C. При таком определении предварительно осущенную пробу помещают в нагретую печь для озоления и выдерживают 60 мин при заданной температуре.

2.2.3 Определение содержания летучих компонентов

В некоторых случаях имеет значение определение содержания летучих компонентов в исходных или отработанных активных углях. Для этого в соответствии с DIN 51720 [22] влажную пробу нагревают в тигле из кварцевого стекла с притертой крышкой, помещенном в муфельную печь, в течение 7 мин при 900±10 °C. Содержание летучих веществ выражается в массовых процентах, отнесенных к единице массы сухого исходного материала.

2.2.4 Определение рН

Благодаря содержанию минеральных компонентов и присутствию поверхностных кислородных соединений углерода активные угли могут оказывать большое влияние на рН водных систем. Поскольку в химической и пищевой промышленности активные угли применяются для обработки многих веществ, чувствительных к значению рН, определение этой величины нередко является важным критерием при выборе необходимого активного угля. Согласно методике, неосушенный уголь кипятят в течении 5 минут в деионизированной, свободной от углекислого газа воде. Охлаждают, отстаивают, фильтруют. Значение рН декантактированного раствора определяют потенциометрическим методом помощью c стеклянного электрода.

2.2.5 Определение набухаемости

Сорбенты на основе углей обладают относительно жесткой пространственной структурой. Тем не менее, приведенные в контакт с водой или водными растворами они способны поглощать растворитель, удерживая его в полостях своего каркаса. Величина набухания зависит от строения углеродсодержащего сорбента, природы и концентрации активных центров на его поверхности, состава раствора. Для определения набухаемости [23, 24] исходный сорбент приводят в равновесие с дистиллированной водой при

комнатной температуре. Набухший сорбент отделяют от воды на стеклянном фильтре и переносят на листы фильтровальной бумаги. Промоканием удаляют излишки воды до тех пор, пока на бумаге практически не остаются следы влаги. Навеску подготовленного таким образом углеродсодержащего сорбента (воздушно — сухая форма) помещают в бюкс, предварительно высушенный до постоянной массы, и взвешивают на аналитических весах с точностью до 0.0001 г. Бюкс с навеской помещают в сушильный шкаф и выдерживают при температуре 105°C до постоянной массы.

Набухаемость сорбента рассчитывают по формуле:

$$W = \frac{m_1 - m_2}{m_1} * 100\% ,$$

где W — набухаемость, %; m1 — масса воздушно — сухого сорбента, г; m2 — масса сухого сорбента, г.

2.2.6 Методика анализа химического состава образцов

Количественный анализ элементного состава сорбентов производился на энергодисперсионном рентгеновском флуоресцентном спектрометре EDX–720 (SHIMADZU, Япония) методом калибровочных кривых и фундаментальных параметров.

2.2.7 Методика изучения размеров частиц сорбентов

Готовые образцы, массой 1г, хорошо растерли в фарфоровой ступке (до состояния пыли). Затем перенесли в стаканы, объемом 100мл, залили 50мл дистиллированной воды и перемешали. Полученные суспензии подвергаем обработке ультразвуком и можем проводить измерения на лазерном дифракционном анализаторе частиц (SALD) методом суспензий.

2.3 Определение адсорбции из растворов

Измерение адсорбции одного опытного вещества из раствора является недостаточным для характеристики распределения пор активного угля.

Поэтому оценку активных углей проводят, сравнивая результаты измерений с помощью различных адсорбтивов.

2.3.1 Методика изучения кинетики адсорбции ионов никеля (II), свинца (II), магния (II), кальция (II) и железа(III).

Изучение адсорбции ионов никеля (II), свинца (II), магния (II), кальция (II) и железа(III) исследуемыми сорбентами на основе бентонита проводилось по следующей методике:

1) Раствор свинца (II) концентрацией $0.5 \, г/л \, (500 \mathrm{ppm})$ получали путем добавления навески $0.8 \, г \, \mathrm{Pb}(\mathrm{NO_3})_2 \, к \, 1л \, \mathrm{воды}$.

Навеску готового образца сорбента, массой 1г, заливали дистиллированной водой на 1 час, после декантации навеску заливали 100 мл раствора свинца (II) концентрацией 0.5 г/л на 5 мин, 10 мин, 20мин, 30 мин, 60 мин, 120 мин, 180мин. В процессе сорбции, в указанные промежутки времени, производился отбор проб для рентгенофлуоресцентного анализа ионов свинца (II) в растворе методом калибровочных кривых.

2) Аналогичным образом готовились растворы для исследования кинетики сорбции никеля (II). Раствор никеля концентрацией $0.5\,$ г/л получали путем добавления $2.3\,$ г Ni(NO₃)₂·6H₂O к 1л воды.

Навеску готового образца сорбента, массой 1г, заливали дистиллированной водой на 1 час, после декантации навеску заливали 100 мл раствора никеля (II) концентрацией 0.5 г/л на 5 мин, 10 мин, 20мин, 30 мин, 60 мин, 120 мин, 180мин. В процессе сорбции, в указанные промежутки времени, производился отбор проб для рентгенофлуоресцентного анализа ионов никеля (II) в растворе.

3) Аналогичным образом готовились растворы для исследования кинетики сорбции магния (II), кальция (II) и железа(III). Раствор кальция концентрацией 0.5 г/л получали путем добавления 1.9г Са(NO₃)₂ к 1л воды.

Раствор магния концентрацией 0.5 г/л получали путем добавления 1.1г $Mg(SO_4)_2$ к 1л воды. Раствор железа концентрацией 0.5 г/л получали путем добавления 3.7г $Fe_2(SO_4)_3$ к 1л воды.

Навеску готового образца сорбента, массой 1г, заливали дистиллированной водой на 1 час, после декантации навеску заливали 100 мл раствора магния (II), кальция (II) или железа(III) концентрацией 0.5 г/л на 5 мин, 10 мин, 20мин, 30 мин, 60 мин, 120 мин, 180мин. В процессе сорбции, указанные промежутки времени, производился отбор рентгенофлуоресцентного анализа ионов магния (II), кальция (II) и железа(III) в растворе.

2.3.2 Методика изучения изотерм сорбции ионов никеля (II), свинца (II), магния (II), кальция (II) и железа(III).

Пять навесок бентонита по 1 г, заливались дистиллированной водой (100 мл) на 1 час, после декантации эти навески заливались 100 мл модельного раствора.

Для снятия изотерм сорбции ионов никеля (II), свинца (II) магния (II), кальция (II) и железа(III) в нейтральной среде исследуемыми сорбентами готовили растворы солей никеля (II), свинца (II), магния (II), кальция (II) и железа(III) с концентрацией 1; 0.5; 0.1; 0.05; 0.01 г/л, заливали ими образцы сорбентов на 2 часа. После чего каждый раствор сливался и анализировался на содержание ионов металлов с помощью рентгенофлуоресцентного анализа по методу калибровочных кривых.

2.3.3 Методика изучения адсорбции органических веществ.

Адсорбция органических веществ (бензол, толуол, формальдегид, четыреххлористый углерод и дихлорметан) происходила из водных растворов.

В мерный стакан добавляли 50 мл исследуемого органического вещества и 50 мл воды, смесь хорошо перемешивалась и отстаивалась в течение 1 часа. На аналитических весах взвешивали навеска сорбента в 2г, помещали ее в колбу и заливали готовым раствором, оставляя на 2 часа. После чего раствор анализировался на колориметре фотоэлектрическом концентрационном КФК-2. Навеску образца сорбента, массой 2г, заливали дистиллированной водой на 1 час, после декантации навеску заливали 100 мл водного раствора бензола, толуола, формальдегида, четыреххлористого углерода и ... на 5 мин, 10 мин, 20мин, 30 мин, 60 мин, 120 мин, 180мин. В процессе сорбции, в указанные промежутки времени, производился отбор фотоэлектрическом проб ДЛЯ анализа на колориметре концентрационном КФК-2.

3. Полученные результаты и их обсуждение

3.1.1 Изучение химического состава сорбентов

Изучение элементного состава исследуемых сорбентов было проведено рентгенофлуоресцентным методом. Из полученных результатов (таблица 1) видно, что в основном минералогический состав сорбентов представлен алюмосиликатами, соединениями железа, кальция, калия и хлора. По элементному составу исследуемые образцы сходны, даже высокотемпературный обжиг практически не повлиял на элементный состав бентонита.

Таблица 1 – Элементный состав исследуемых образцов сорбентов

Химический			C	одержан	ие, мас.	%		
элемент	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.	Обр.
	№ 1	№2	№3	№4	№5	№7	№8	№ 9
Al	4.8	8.0	6.8	7.5	6.3	5.3	5.9	5.6
Fe	29.1	14.9	51.3	13.9	17.4	15.7	19.5	12.9

Si	40.7	45.6	44.6	45.0	38.4	43.3	43.3	45.9
Ca	16.1	17.4	8.1	5.4	7.5	7.3	9.2	5.1
K	4.8	5.2	3.6	2.6	3.8	3.5	4.0	2.6
C1	2.8	1.6	14.2	1.2	1.3	13.7	1.8	1.1

3.1.2 Анализ размеров частиц исследуемых сорбентов

Изучение размеров частиц исследуемых сорбентов было проведено на лазерном дифракционном анализаторе частиц (SALD) методом суспензий. Исследование образцов сорбентов показало, что размер частиц определяется в пределах 0.5–500 мкм.

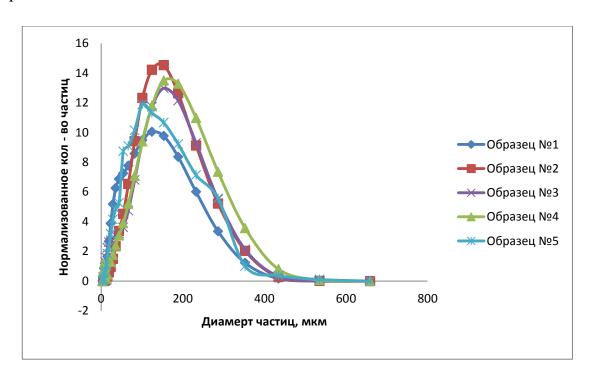


Рисунок 1 — Дифференциальные кривые распределения по размерам частиц образцов исследуемых сорбентов

В таблице 2 приведены результаты обработки кривых распределения частиц исследуемых сорбентов по размерам. Как видно из таблицы частицы сорбентов имеют различный размер. Они достаточно крупные, основное содержание частиц приходится на 100 – 200 мкм.

Таблица 2 – Размеры частиц исследуемых образцов сорбентов

Размер частиц,	Содержание, мас.%						
MKM	Обр. №1	Обр. №2	Обр. №3	Обр. №4	Обр. №5		
0.5 - 5	2.69	3.25	1.87	2.06	2.60		
5 – 10	3.71	8.98	5.49	1.82	0,45		
10 – 50	13,03	9.52	5,88	9.62	5.77		
50 – 100	19.78	13,76	12.22	12,53	10.43		
100 – 200	37.53	42.65	41.60	44.93	50.11		
200 – 500	20.57	21.84	32.94	29.04	30.64		

3.1.3 Изучение удельной поверхности бентонита и композиционных сорбентов на его основе

Структурные характеристики образцов определяли по низкотемпературной адсорбции газов Quantachrome NOVA (США). Значения приведены в таблице 3.

Таблица 3 – Структурные характеристики образцов исследуемых сорбентов

Образец	$S_{yд}$,	V_{nop} ,	, Распределение пор по радиусам, %				
Ооразец	${ m m}^2/\Gamma$	cm^3/Γ	1.5-2.0нм	2.0-4.0нм	4.0-8.0нм	более 8.0нм	
Обр. 1	61.85	0.063	9	21	23	47	
Обр. 2	153.12	0.081	16	44	27	13	
Обр. 3	189.86	0.097	19	43	23	15	
Обр. 4	206.78	0.112	17	45	25	13	
Обр. 5	255.10	0.125	19	45	24	12	

Результаты показали, что большая часть пор всех модифицированных образцов приходится на поры размером 2.0-8.0 нм. Установлено, что модифицирование бентонита пиролитическим углеродом и хлоридом железа

(III) приводит к повышению площади удельной поверхности сорбентов, которая составляет $200-250~\text{m}^2/\Gamma$.

3.1.4 Определение набухаемости исследуемых сорбентов

Важным эксплуатационным свойством сорбентов является набухаемость, так как от неё зависит скорость диффузии поглощаемых ионов, а, следовательно, равновесие и кинетика протекающих процессов. Вхождение полярного растворителя – воды в сорбенты связано с их групп пористостью И наличием полярных (гидрофильных) ИΧ поверхности, способных электростатически или за счет водородных связей взаимодействовать с молекулами воды.

Результаты определения набухаемости углеродных сорбентов приведены в таблице 4.

Таблица 4 – Значения набухаемости образцов исследуемых сорбентов.

Образец	1	2	3	4	5
Набухаемость W,%	23.9	49.1	53.0	66.5	89.3

Таким образом, увеличение плотности сорбентов выражается в уменьшении набухаемости. Изменение набухаемости необходимо учитывать при эксплуатации сорбентов во избежание нарушений гидродинамического режима сорбционного слоя, закупоривания, деформации или разрыва сорбционных фильтров.

3.1.5 Определение влагосодержания, содержания летучих веществ, зольности и рН исследуемых сорбентов

Также важными свойствами для сорбентов являются влагосодержание, содержание золы, содержание летучих компонентов, рН водных систем. Результаты определения этих данных представлены в таблице 5.

Таблица 5 – Данные влагосодержания, содержания летучих веществ, зольности и pH образцов исследуемых сорбентов.

Образец	1	2	3	4	5
Влагосодержание, %	4,3	2,9	6,2	5,8	7,7
Зольность, %	32	52	44	51	56
Содержание летучих веществ, %	65	56	57	40	39
рН водных систем	8.7	8.1	9.3	9.5	10.4

Зольность активных углей определяют прокаливанием навески, помещенной в фарфоровый тигель, в электрической муфельной печи. Благодаря содержанию минеральных компонентов и присутствию поверхностных кислородных соединений углерода активные угли могут оказывать большое влияние на рН водных систем.

3.3 Изучение процесса сорбции некоторых ионов металлов и органических веществ исследуемыми сорбентами

Главным свойством ионообменных материалов, определяющим их способность к реакциям обмена, является полная обменная ёмкость. Наряду с обменной сорбцией ионообменники могут поглощать ионы за счет взаимодействий, отличающихся от реакций двойного обмена. В этом случае говорят о сорбционной емкости (СЕ) по конкретным ионам металлов или органическим соединениям.

3.3.1 Изучение процесса сорбции органических веществ исследуемыми сорбентами

Для исследования процесса сорбции полученных сорбентов были взяты водные растворы некоторых органических веществ (бензола, толуола, формальдегида, четыреххлористого углерода и дихлорметана). Ниже представлены изотермы сорбции (рис. 2-6).

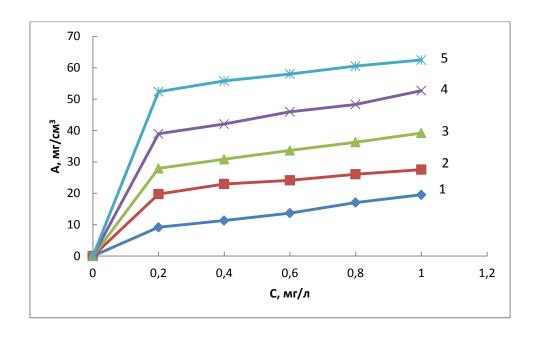


Рис 2 — Изотермы сорбции бензола в нейтральной среде композитными сорбентами на основе бентонита: 1 — природный бентонит с акт. углем (образец 1), 2 — отожженный бентонит с акт. углем (образец 2), 3 — гранулированный бентонит с акт. углем (образец 3), 4 — отожженный бентонит с акт. углем + FeCl3 (образец 4), 5 — гранулированный бентонит с акт. углем + FeCl3 (образец 5).

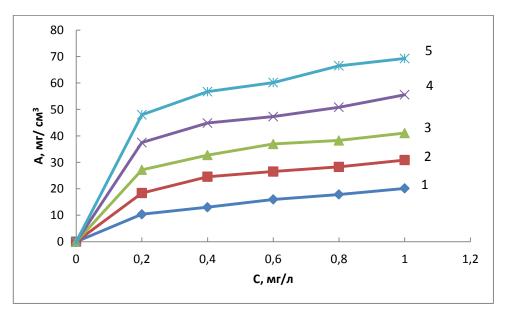


Рис 3 — Изотермы сорбции толуола в нейтральной среде композитными сорбентами на основе бентонита: 1 — природный бентонит с акт. углем (образец 1), 2 — отожженный бентонит с акт. углем (образец 2), 3 — гранулированный бентонит с акт. углем (образец 3), 4 — отожженный бентонит с акт. углем + FeCl3 (образец 4), 5 — гранулированный бентонит с акт. углем + FeCl3 (образец 5).

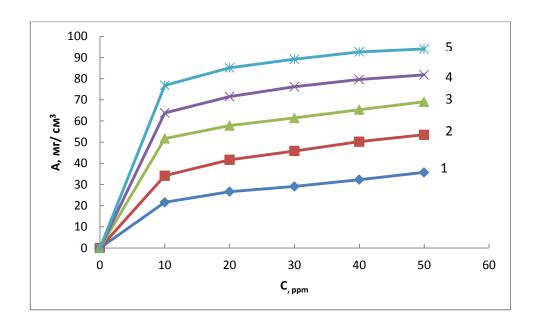


Рис 4 — Изотермы сорбции формальдегида в нейтральной среде композитными сорбентами на основе бентонита: 1 — природный бентонит с акт. углем (образец 1), 2 — отожженный бентонит с акт. углем (образец 2), 3 — гранулированный бентонит с акт. углем (образец 3), 4 — отожженный бентонит с акт. углем + FeCl3 (образец 4), 5 — гранулированный бентонит с акт. углем + FeCl3 (образец 5).

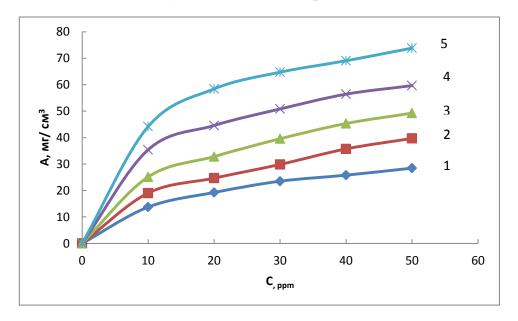


Рис 5 — Изотермы сорбции четыреххлористого углерода в нейтральной среде композитными сорбентами на основе бентонита: 1 — природный бентонит с акт. углем (образец 1), 2 — отожженный бентонит с акт. углем (образец 2), 3 — гранулированный бентонит с акт. углем (образец 3), 4 — отожженный бентонит с акт. углем + FeCl3 (образец 4), 5 — гранулированный бентонит с акт. углем + FeCl3 (образец 5).

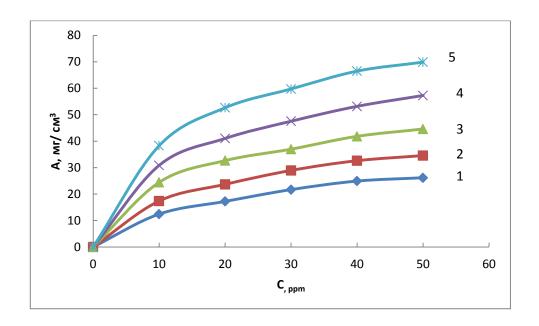


Рис 6 — Изотермы сорбции дихлорметана в нейтральной среде композитными сорбентами на основе бентонита: 1 — природный бентонит с акт. углем (образец 1), 2 — отожженный бентонит с акт. углем (образец 2), 3 — гранулированный бентонит с акт. углем (образец 3), 4 — отожженный бентонит с акт. углем + FeCl3 (образец 4), 5 — гранулированный бентонит с акт. углем + FeCl3 (образец 5).

3.3.2 Изучение процесса сорбции ионов некоторых металлов исследуемыми сорбентами

На рисунках 7 — 11 представлены изотермы сорбции ионов некоторых металлов для исследуемых образцов композиционных сорбентов.

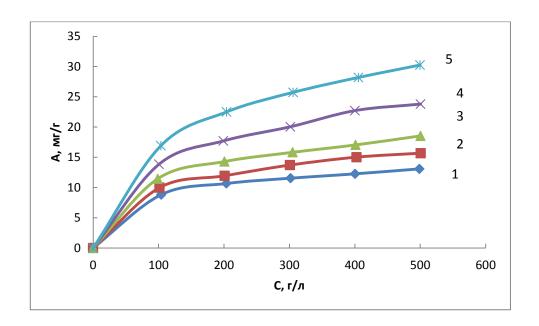


Рис 7 – Изотермы сорбции ионов железа (III) в нейтральной среде композитными сорбентами на основе бентонита: 1 – природный бентонит с акт. углем (образец 1), 2 – отожженный бентонит с акт. углем (образец 2), 3 – гранулированный бентонит с акт. углем (образец 3), 4 – отожженный бентонит с акт. углем + FeCl3 (образец 4), 5 – гранулированный бентонит с акт. углем + FeCl3 (образец 5).

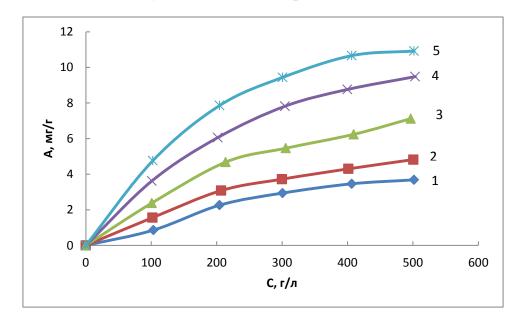


Рис 8 — Изотермы сорбции ионов никеля (II) в нейтральной среде композитными сорбентами на основе бентонита: 1 — природный бентонит с акт. углем (образец 1), 2 — отожженный бентонит с акт. углем (образец 2), 3 — гранулированный бентонит с акт. углем (образец 3), 4 — отожженный бентонит с акт. углем + FeCl3 (образец 4), 5 — гранулированный бентонит с акт. углем + FeCl3 (образец 5).

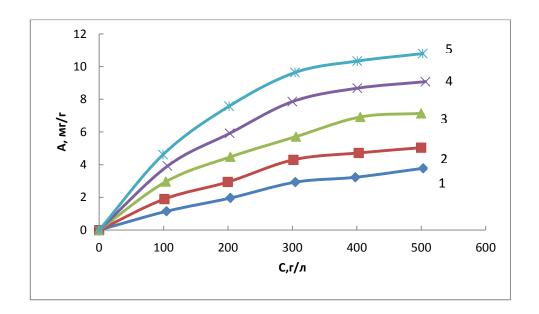


Рис 9 — Изотермы сорбции ионов свинца (II) в нейтральной среде композитными сорбентами на основе бентонита: 1 — природный бентонит с акт. углем (образец 1), 2 — отожженный бентонит с акт. углем (образец 2), 3 — гранулированный бентонит с акт. углем (образец 3), 4 — отожженный бентонит с акт. углем + FeCl3 (образец 4), 5 — гранулированный бентонит с акт. углем + FeCl3 (образец 5).

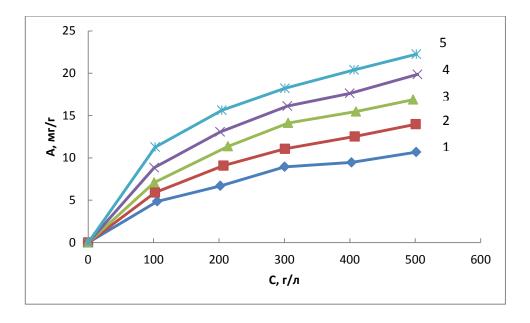


Рис 10 – Изотермы сорбции ионов кальция (II) в нейтральной среде композитными сорбентами на основе бентонита: 1 – природный бентонит с акт. углем (образец 1), 2 – отожженный бентонит с акт. углем (образец 2), 3 – гранулированный бентонит с акт. углем (образец 3), 4 – отожженный

бентонит с акт. углем + FeCl3 (образец 4), 5 – гранулированный бентонит с акт. углем + FeCl3 (образец 5).

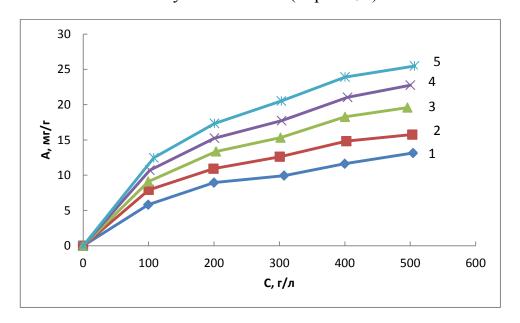


Рис 11 – Изотермы сорбции ионов магния (II) в нейтральной среде композитными сорбентами на основе бентонита: 1 – природный бентонит с акт. углем (образец 1), 2 – отожженный бентонит с акт. углем (образец 2), 3 – гранулированный бентонит с акт. углем (образец 3), 4 – отожженный бентонит с акт. углем + FeCl3 (образец 4), 5 – гранулированный бентонит с акт. углем + FeCl3 (образец 5).

Далее в таблицах 6 и 7 приведены значения предельной сорбционной ёмкости для органических веществ (бензола, толуола, формальдегида, четыреххлористого углерода и дихлорметана) и для ионов металлов свинца (II), кальция (II) и магния(II)) на (железа(III), никеля (II), исследуемых сорбентах. Как полученных видно ИЗ данных, модифицирование бентонита пиролитическим углеродом условиях каталитической графитизации древесных опилок приводит к увеличению сорбции исследуемых органических веществ и ионов металлов (~ в 3 раза).

Таблица 6 – Значения предельной сорбционной ёмкости органических веществ для исследуемых сорбентов.

	Предельная сорбционная ёмкость, /							
Образец	бензол	формальдегид	четыреххлористый	толуол	ниунормотон			
	ОСНЗОЛ	формальдегид	углерод	10119011	дихлорметан			
1	19,51	35,74	28,45	20,14	26,17			
2	27,54	53,49	39,69	30,84	34,55			
3	39,16	69,07	49,25	41,06	44,59			
4	52,68	81,84	59,65	55,53	57,27			
5	62,46	94,06	73,83	69,23	69,87			

Таблица 7 — Значения предельной сорбционной ёмкости ионов металлов для исследуемых сорбентов.

No ofnorus	Предельная сорбционная ёмкость, г/л						
№ образца	Mg^{2+}	Ca ²⁺	Pb ²⁺	Ni ²⁺	Fe ³⁺		
1	13,15	10,68	3,78	3,68	13,08		
2	15,75	13,97	5,04	4,82	15,68		
3	19,58	16,88	7,14	7,12	18,54		
4	22.76	19,86	9,08	9,48	23,80		
5	25,48	22,24	10,80	10,92	30,26		

Таким образом, полученные композитные сорбенты на основе бентонита пиролитического И углерода, полученного В условиях графитизации, каталитической проявляют абсорбционную высокую активность по отношению к органическим веществам, достигающую $70 - 90 \text{ мг/см}^3$, а также по отношению к ионам некоторых металлов, достигающую 10 - 30 мг/г.

Выводы

- 1. Получены композитные сорбенты на основе природного бентонита и углерода, вводимого пиролизом древесных опилок условиях каталитической карбонизации с использованием в качестве катализатора железа. По минералогическому И элементному хлорида исследуемые образцы сорбентов сходны. Высокотемпературный обжиг образцов сорбентов практически не повлиял на их состав.
- Установлено, что наибольшую дисперсность имеют композитные сорбенты, каталитическая графитизация углерода в которых происходила в присутствии в качестве катализаторов хлоридов железа (образцы №4,5). Показано, что на процесс каталитической графитизации существенное влияние оказывает химический состав и структурная матрица бентонита. В его отсутствии пиролиз органических прекурсоров не формирует углеродную фракцию с высокоразвитой поверхностью.
- 3. Проведено сравнительное изучение сорбционных свойств бентонита и композитных сорбентов, модифицированных пиролитическим углеродом по отношению к органическим веществам (бензол, толуол, формальдегид, четыреххлористый углерод и дихлорметан) и ионам некоторых металлов (никель (II), свинец (II), магний (II), кальций (II) и железо (III)) в нейтральных Показано, модифицирование водных средах. что природного бентонита углеродом повышению приводит К сорбционных свойств: установлено увеличение предельной сорбционной емкости в 3 раза по отношению к исследуемым веществам по сравнению с исходным бентонитом.