Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра метеорологии и климатологии

Синоптические и метеорологические условия режима осадков на станции Саратов ЮВ в осенне-зимний период

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента 4 курса 411 группы	
по направлению 05.03.05 Прикладная гидрометеоролого	<u> РИ</u>
географического факультета	
Коваленко Сергея Сергеевича	
Научный руководитель,	
доцент, к.г.н., доцент	Г.Ф. Иванова
Заведующий кафедрой,	
профессор, д.т.н., профессор	М.Б. Богданов

Во введение рассмотрена важность изучения режима осадков. Влияние атмосферных осадков на ослабление радиоволн в системах связи и на потери электроэнергии в высоковольтных линиях электропередачи. Действие осадков на разного рода сооружения. Важность учета влияния осадков и иных климатических показателей, которые закладываются в расчетные схемы при проектировании городских канализационных систем, воднодренажных сетей, разного рода промышленных и строительных перекрытий.

Решение целого ряда гидрологических и сельскохозяйственных задач, в частности расчет ливневого стока и прогнозирование урожайности сельскохозяйственных культур, исследование влияния осадков на эрозию почв, существенно зависит от знания характеристик пространственно-Так же подчеркнута временной структуры этого элемента климата. необходимость разработки прогнозов новых методов осадков использованием новых технологий и внедрение электронно-вычислительной техники.

Работа включает в себя следующие подразделы, главы и подразделы:

Введение

- 1 Облачность и осадки
- 1.1 Осадки, выпадающие из облаков различных форм
- 1.2 Классификация осадков
- 1.3 Суточный и годовой ход осадков
- 1.4 Критерии осадков и их использование в прогнозах погоды
- 2 Режим осадков на станции Саратов ЮВ в осенне-зимний период и их многолетняя изменчивость
- 2.1 Климатический режим осадков на станции Саратов ЮВ в осенне-зимний период
- 2.2 Статистические характеристики осадков на станции Саратов ЮВ в осенне-зимний период
- 2.3 Линейные тренды месячных и сезонных сумм осадков на станции Саратов ЮВ в осенне-зимний период

- 2.4 Отклонение рассчитанных средних характеристик осадков от их климатических норм
- 3 Режим осадков на ст. Саратов ЮВ в осенне-зимний период за 2015-2018 гг. и их связь с синоптическими процессами
- 3.1 Синоптические процессы Нижнего Поволжья
- 3.2 Численные критерии метеорологических параметров и синоптические процессы для прогноза осадков различной интенсивности.

Заключение

Список использованных источников

Исходным материалом послужили месячные суммы осадков, а также суточные максимумы осадков на станции Саратов Юго-Восток (ЮВ) за период 1934/35-2007/08 гг. за осенне-зимний период.

Основной целью бакалаврской работы являлось изучение климатического режима атмосферных осадков на станции Саратов ЮВ в осенне-зимний период и его многолетней изменчивости.

Основные задачи:

- Расчет и анализ статистической структуры осадков.
- Оценка многолетней изменчивости месячных сумм осадков.
- Определение метеорологических критериев и типов синоптических процессов для целей прогноза осадков.

В первой главе дипломной работы рассматривается облачность с которой связанны осадки. Рассмотрены влияние температуры внутри облачности и высотной протяженности облаков на интенсивность и фазовое состояние осадков, выпадающих из различных облаков.

Так же рассматривались классификации осадков по генетическому типу, деление осадков по форме. Диаметр капель, влияние температуры на их фазовое состояние, а так же причины и процессы образование осадков в твердом состоянии.

Рассматривались возможности прогноза выпадения фронтальных ливневых осадков одновременно с перемещением линии фронта, с которым

они связанны, внося изменения, связанные с эволюцией фронта, суточным ходом облаков и осадков, влиянием рельефа местности и других местных особенностей района. Прогноз внутримассовых ливневых осадков и трудности их прогноза. Представлены термины характеризующие факт наличия или отсутствия осадков, их количественные и качественные характеристики, их продолжительность и времени начала и прекращения осадков.

Рассмотрены различия типов суточного хода осадков, их особенности, минимумы и максимумы осадков в годовом и суточном ходе осадков на той территории где характерно наличие того или иного типа хода осадков.

Во второй главе проводилось исследование климатического режима осадков на станции Саратов ЮВ. Данное исследование проводилось с метеорологических данных использованием ПО осадкам Научносправочника CCCP. Рассмотрено прикладного месячное годовое количество осадков (мм) и проведено их сравнение. Рассмотрено среднее максимальное суточное количество, месячное и годовое количество жидких (ж), твердых (т) и смешанных (с) осадков (мм). Так же осадки были разделены по дням с различным количеством осадков за каждый месяц и за год в целом. Рассмотрены суммы осадков за каждый месяц, за осенне-зимний период и в целом за год. Рассмотрены максимальные и минимальные значения месячных сумм осадков (мм) станции Саратов ЮВ в осенне-зимний период.

Проводился расчет статистических характеристик статистические характеристики месячных сумм осадков и суточных максимумов количества осадков для каждого месяца осенне-зимнего периода 1935-2008 гг и проведен их анализ. Расчеты проводились по таким характеристикам как:

1 Среднее многолетнее значение:

$$x_{\rm cp} = \frac{\sum x_i}{n}$$

2 Среднее квадратическое отклонение:

$$\sigma_x = \sqrt{\left[\frac{\sum (x_i - x_{cp})^2}{(n-1)}\right]}, \text{ np } n > 30.$$

3 Размах варьирования:

$$R = x_{\text{макс}} - x_{\text{мин}}$$

4 Коэффициент вариации:

$$c_{\chi} = \frac{\sigma_{\chi}}{\chi_{\rm cp}}$$

Ошибки статистических величин рассчитывались по следующим формулам [14]:

1 Среднего арифметического значения:

$$\sigma_{xcp} = \frac{\sigma_x}{\sqrt{n}}$$

2 Среднего квадратического отклонения:

$$\sigma_{\sigma} = \frac{\sigma_{\chi}}{\sqrt{(2n-1)}}$$

3 Коэффициента вариации:

$$\sigma_c = C_x \frac{\sqrt{(1+C_x^2)}}{\sqrt{2n}}$$

Все случаи с осадками были поделены на градации и выведены в таблицу для оценки повторяемость различных градаций суточных максимумов и месячных сумм осадков (число случаев/%) в осенне-зимний сезон на станции Саратов ЮВ за период 1935-2008 годы.

Были построены графики распределения месячных сумм осадков за период с 1935/36 по 2007/08 годы с целью изучения многолетней изменчивости сумм осадков с использованием линейных трендов.

В заключение 2ого раздела было произведено сравнение месячных сумм осадков за исследуемый период 1935/36-2007/08 гг. с климатическими нормами, взятыми из Научно-прикладного справочника.

В третьей главе произведенная краткая характеристика синоптических процессов Нижнего Поволжья. Кратко рассмотрены процессы оказывающие влияние на формирование погоды и климата в этом районе:

I — циклоническая деятельность на арктическом фронте;

II — арктический антициклон;

III — зимний азиатский антициклон;

IV — субтропический антициклон;

V — южный (каспийский) циклон;

VI — циклоническая деятельность на полярном фронте;

VII — деформационное поле.

Также сказано об образование осадков над определенным районом и о влагосодержание, OT которого непосредственно зависит объем сконденсированной влаги при адиабатическом восхождении единицы объема воздуха, интенсивность вертикальной энергии неустойчивости, конвергенции водяного пара в нижних слоях атмосферы. Оценка осадкообразующих факторов была проведена на основе дефицитов точки росы на карте АТ-850 гПа в области атмосферного фронта за 18 -24 часа до его вторжения в пункт прогноза. Все осадки были разделены на слабый умеренные и сильные осадки в соответствии с наставлениями о краткосрочных прогнозах погоды. Проведено исследование случаев с осадками разной интенсивности в осеннезимний различные период за годы, ДЛЯ которых определялись соответствующие значения дефицитов точки росы на карте абсолютной топографии (АТ) 850 гПа и градиент геопотенциала на карте АТ- 700 гПа за 24 часа до выпадения осадков. Данные приведены в таблице 1 и 2.

Таблица 1 - Число дней со снегом разной интенсивности и соответствующие им метеорологические параметры за осенне-зимний период 2016/17гг. (составлено автором)

Осадки разной интенсивности	Количество	Число случаев,	Дефицит, ⁰ С,	Градиент Н,
	осадков,	•	на карте	гп дам/100 км
	мм за 12 час	дни	АТ-850 гПа	на карте АТ-700
Слабый снег	0,0-1,0	30	0,2-3,6	0,7-3,6
Умеренный снег	2 - 5	11	0,5-2,5	1,4 -3,6
Сильный снег	6 - 19	5	0,2-2,5	1,3 -7,6

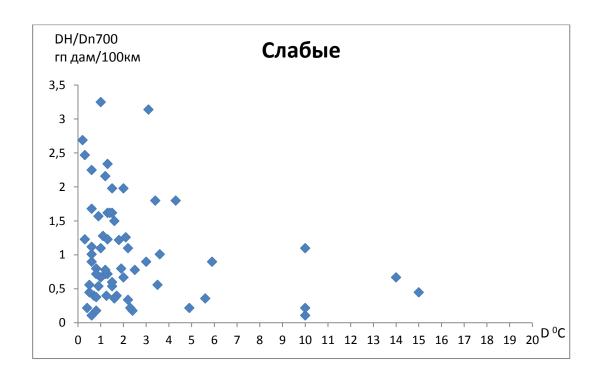
Таблица 2 - Число дней со снегом разной интенсивности и соответствующие им метеорологические параметры за осенне-зимний период 2017/18гг. (составлено автором)

Осадки разной интенсивности	Количество осадков, мм за 12 час	Число случаев, дни	Дефицит, ⁰ С, на карте AT-850 гПа	Градиент Н, гп дам/100 км на карте АТ-700
Слабый снег	0,0-1,0	34	0,6-5,9	0,6-1,7
Умеренный снег	2 - 5	4	1,5-3,9	0,3 -2,3
Сильный снег	6 - 19	2	1,6-5,0	0,1 -1,9

Рассмотрена связь синоптических процессов с осадками разной интенсивности. Проведено сравнение параметров, полученных по данным за осенне-зимний период 2016/17гг и теме же параметрами, полученными за осенне-зимний период 2017/18гг. Данные приведены в таблицах 3 и 4.

Таблица 3 — Число случаев с осадками разной интенсивности при различных синоптических процессах за осенне-зимний период 2016/17гг. (составлено автором)

Осадки разной	Арктический	Полярный	Сближение двух	Всего
интенсивности	фронт	фронт	фронтов	
Слабый снег	17	7	6	30
Умеренный снег	6		5	11
Сильный снег		2	3	5
Всего	23	9	14	46


Таблица 3.2.4 — Число случаев с осадками разной интенсивности при различных синоптических процессах за осенне-зимний период 2017/18 гг. (составлено автором)

Осадки разной	Арктический	Полярный	Сближение	Всего
интенсивности	фронт	фронт	двух	
			фронтов	
Слабый снег	21	8	5	34
Умеренный снег	2	1	2	5
Сильный снег	1		1	2
Всего	24	9	8	41

Были построены графики зависимости случаев выпадения осадков слабой умеренной и сильной интенсивности от градиентов геопотенциала на картах AT-700 гПа и дефицитов на картах AT-850 гПа. Данные графики представленны на рисунках 1, 2 и 3

Осадки слабой интенсивности имеют наибольшую повторяемость при небольших дефицитах, от 0.2^0 до 2.5^0 С, и градиентов геопотенциала, от $1 \, \text{гп} \, \text{дам}/100 \, \text{км}$ до $3 \, \text{гп} \, \text{дам}/100 \, \text{км}$.

Рисунок 1 - Связь между градиентами геопотенциала на картах АТ-700 гПа и дефицитами точки на картах АТ-850 гПа, для случаев осадков слабой интенсивности за осенне-зимний период 2016-2018 годы (составлено автором)

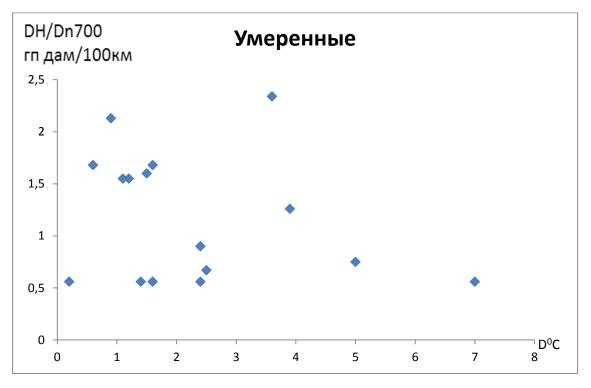


Рисунок 2 - Связь между градиентами геопотенциала на картах АТ-700 гПа и дефицитами точки на картах АТ-850 гПа, для случаев осадков умеренной интенсивности за осенне-зимний период 2016-2018 годы (составлено автором)

В случае выпадения осадков умеренной интенсивности связь оказалась слабой ввиду небольшого числа случаев. Однако и здесь по скученности точек можно выделить преобладающие сочетания градиента геопотенциала

на АТ-700 гПа от 1 до 3 гП дам/100 км и дефицитов точки росы на АТ-850 гПа от 0.5° до 2.5° С .

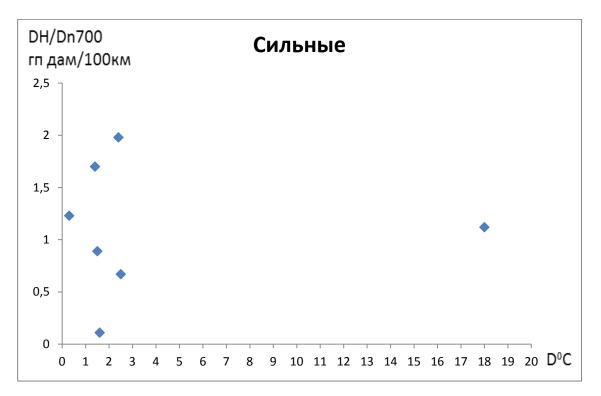


Рисунок 3 - Связь между градиентами геопотенциала на картах АТ-700 гПа и дефицитами точки росы на картах АТ-850 гПа, для случаев осадков сильной интенсивности за осенне-зимний период 2016-2018 годы (составлено автором)

Для осадков сильной интенсивности связь также слабая. Причиной является малое число дней с осадками сильной интенсивности за исследуемый период.

B заключение были приведены результаты исследований, проводившихся в бакалаврской работе. А так же сделан основной вывод о осенне-зимний период осадки выпадают при прохождении том, что в атмосферных фронтов при условии малых дефицитов точки росы на карте АТ-850 ГПа и значительных градиентах геопотенциала на карте АТ-700 гПа в зоне атмосферного фронта. Полученные численные критерии могут быть использованы при прогнозе осадков, как явления. Однако, полученных критериев недостаточно для прогнозирования количества ожидаемых осадков.