Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра физики твердого тела

«ИСПОЛЬЗОВАНИЕ МИКРОКОАКСИАЛЬНОГО ЗОНДА БЛИЖНЕПОЛЕВОГО СВЧ-МИКРОСКОПА С РЕЗОНАТОРОМ В ВИДЕ ОТРЕЗКА ВОЛНОВОДА ДЛЯ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ»

АВТОРЕФЕРАТ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ МАГИСТРА

студента 2 курса

по направлению 11.04.04 «Электроника и наноэлектроника»

факультета нано- и биомедицинских технологий

Хлопкова Алексея Васильевича

Научные руководители

профессор, д.фм.н.		А.В. Скрипаль
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
доцент, к.фм.н.		А.П. Фролов
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
Зав. кафедрой		
профессор, д.фм.н.		Д.А. Усанов
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия

Саратов, 2018

Введение

Ближнеполевая СВЧ-микроскопия – это неразрушающий метод исследования, позволяющий исследовать малоразмерные объекты с высокой степенью локальности, базируется на регистрации СВЧ-воздействия, локализованного в ближнем поле зонда.

СВЧ-микроскопия обладает рядом преимуществ: электромагнитная волна не имеет массы и электрического заряда, свободно распространяется в воздухе и многих диэлектрических материалах, легко изменяет поляризацию, может иметь сравнительно большую длину волны и т.д.

Таким образом, с помощью СВЧ-микроскопа можно определять не только геометрию поверхности объектов, но и параметры материалов под поверхностью, за счет проникновения СВЧ-излучения в объем структуры. Это является основным достоинством СВЧ-микроскопа по сравнению с туннельным и атомно-силовым микроскопами.

Ближнеполевые СВЧ-микроскопы, в отличие от оптических, не ограничены дифракционным пределом, разрешающая способность превосходит длину волны использующегося излучения на несколько порядков. В таких микроскопах используется эффект «ближнего поля» – образование квазистационарных полей, быстро затухающих с расстоянием и локализующихся в малой окрестности излучающей системы. Располагая исследуемый объект в области существования этого поля, можно исследовать распределение его электрофизических свойств с разрешением, намного меньшим, чем длина волны используемого излучения.

Для того чтобы достичь высокого быстродействия современная электроника работает на больших частотах. СВЧ-микроскоп позволяет исследовать параметры электронных структур на тех частотах, на которых и планируется их использование.

Целью выпускной квалификационной работы магистра являлось разработка и исследование амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода со структурой, состоящей из диэлектрической поликоровой пластины с нанесенным на неё нанометровым проводящим слоем.

Для достижения этой цели было выполнено:

- при помощи системы автоматизированного проектирования High Frequency Structural Simulator v15 и системы MathCAD смоделирован отрезок волновода с помещенной в него поликоровой пластиной,
- смоделирован отрезок волновода с помещенной в него поликоровой пластиной, имеющей нанометровый проводящий слой,
- смоделирован микрокоаксиальный зонд ближнеполевого СВЧмикроскопа с резонатором в виде отрезка волновода со структурой, из диэлектрической поликоровой пластины с нанесенным на неё нанометровым проводящим слоем.

Для определения возможность измерения параметров диэлектрических материалов была проведена параметризация:

 – действительной части диэлектрической проницаемости измеряемого материала,

-мнимой части диэлектрической проницаемости измеряемого материала,

Проведено экспериментальное исследование амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода с помещенной в него структурой, состоящей из диэлектрической поликоровой пластины и нанесенным на неё нанометровым проводящим слоем

Расчет амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода

На основе численного моделирования с использованием метода конечных элементов в САПР HFSS Ansoft исследовалось взаимодействие электромагнитного поля с системой на основе модели микрокоаксиального зонда СВЧ-микроскопа, созданной по параметрам уже существующего микрокоаксиально-волноводного перехода.

С целью создания резонансной моды колебаний в спектральной характеристике коэффициента отражения, в волноведущую часть данной конструкции, помещалась структура, состоящая из поликоровой пластины и нанесенного на неё нанометрового проводящего слоя с удельным сопротивлением $\rho = 33$ Ом/ \Box . Данная структура была помещена в волновод, полностью заполняя его по поперечному сечению (см. рисунок 1).

Рисунок 1 Участок волновода с помещенной поликоровой пластиной с нанометровым проводящим слоем, полностью заполняющей волновод по поперечному сечению.

Результаты расчета амплитудно-частотных характеристик компьютерной модели микрокоаксиального зонда ближнеполевого СВЧмикроскопа с резонатором в виде отрезка волновода

Для определения амплитудно-частотной зависимости коэффициента отражения *S*₁₁ микрокоаксиального зонда от диэлектрических свойств измеряемого материала было необходимо:

 провести параметризацию действительной части диэлектрической проницаемости измеряемого материала,

провести параметризацию мнимой части диэлектрической проницаемости измеряемого материала,

– определить чувствительность $\partial S_{II} / \partial h$

В результате проведенных расчетов было выявлено уменьшение коэффициента отражения на резонансной частоте на участке изменения объемной доли спирта в растворе от 0% до 32%. На рисунке 2 представлены амплитудно-частотные зависимости коэффициента отражения *S*₁₁ микрокоаксиального зонда

Рисунок 2 Амплитудно-частотные зависимости коэффициента отражения S(1,1) микрокоаксиального зонда, при помещенной внутрь волновода поликоровой пластине с нанометровым проводящим слоем и при различной объемной доли спирта. *1*- ϕ =0%, *2*- ϕ =9%, *3*- ϕ =16%, *4*- ϕ =22%, *5*- ϕ =27%, *6*- ϕ =32%

Как следует из результатов, представленных на рисунке 40, на частоте $f \sim 9.9$ ГГц при изменении объемной доли спирта φ от 0 % до 32 % наблюдается уменьшение коэффициента отражения. Средняя лБ/%. $\partial S_{11}/\partial \phi$, 0.4чувствительность составляет а наибольшая чувствительность $\partial S_{11} / \partial \phi$, наблюдалась на участке от 27% до 32% и достигала 1,95 дБ/%.

В дальнейшем, при увеличении объемной доли спирта и уменьшении диэлектрической проницаемости происходило увеличение коэффициента отражения. Результат полученных данных изображен на рисунке 3.

Рисунок 3 Амплитудно-частотные зависимости коэффициента отражения S(1,1) микрокоаксиального зонда, при помещенной внутрь волновода поликоровой пластине с нанометровым проводящим слоем и при различной объемной доли спирта. *1*- ϕ =32%, *2*- ϕ =36%, *3*- ϕ =40%, *4*- ϕ =43%, *5*- ϕ =45%

Средняя чувствительность $\partial S_{11}/\partial \varphi$, составляет 0,98 дБ/%, а наибольшая чувствительность $\partial S_{11}/\partial \varphi$, наблюдалась на участке от 32% до 36% и достигала 1.64 дБ/%.

По результатам компьютерного моделирования видно, что структура, состоящая из поликоровой пластины и нанесенного на неё нанометрового проводящего слоя, может являться частью резонатора. Экспериментальное исследование амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧмикроскопа с резонатором в виде отрезка волновода с помещенной внутрь структурой, состоящей из поликоровой пластины и нанесенного на неё нанометрового проводящего слоя

Исследовались высокочастотные характеристики СВЧ-устройства на основе резонатора в виде отрезка волновода с помещенной внутрь структурой, состоящей из поликоровой пластины и нанесенного на неё нанометрового проводящего слоя. Волновод соединен с микрокоаксиальным переходом, центральный проводник которого выступает за пределы внешнего проводника на величину порядка 1 мм. Зонд данного устройства погружался на 1 мм в объем исследуемого диэлектрического раствора. Высокочастотные характеристики приведенного СВЧ-устройства исследовались с помощью векторного анализатора цепей Agilent PNA-L Network Analyzer N5232A.

С целью создания резонансной моды колебаний на спектральной характеристике коэффициента отражения, в волноведущую часть данной конструкции, помещалась структура, состоящая из нескольких поликоровых пластин, одна из которых имела напыленный нанометровый проводящий слой

На рисунке 4 представлено семейство амплитудно-частотных характеристик коэффициента отражения *S*₁₁ микрокоаксиального зонда,

Рисунок 4 Семейство амплитудно-частотных характеристик коэффициента отражения *S*₁₁ микрокоаксиального зонда, для различных объемных долей *φ* спирта.

а) общий вид амплитудно-частотных характеристик

b) амплитудно-частотные характеристики на частоте $f \sim 8.35$ ГГц при:

1 - $\varphi = 0\%$; 2 - $\varphi = 16\%$, 3 - $\varphi = 32\%$, 4 - $\varphi = 40\%$. 5 - $\varphi = 48$

Как следует из результатов, представленных на рисунке 4, на частоте $f \sim 8.35 \ \Gamma \Gamma \mu$ при изменении объемной доли спирта φ от 0 % до 32 % наблюдается уменьшение коэффициента отражения. Средняя чувствительность $\partial S_{11}/\partial \varphi$, составляет 0,22 дБ.

В дальнейшем, при увеличении объемной доли спирта и уменьшении диэлектрической проницаемости происходило увеличение коэффициента отражения. Средняя чувствительность $\partial S_{11}/\partial \varphi$, составляет 0,33 дБ.

На основе полученных результатов была построена калибровочная кривая для четырех частот (см. рисунок 5).

Рисунок 5 Калибровочные кривые на четырех частотах измерения: 1 - f = 8,4 ГГц; 2f = 8,38 ГГц, 3f = 8,36 ГГц, 4f = 8,34 ГГц, 5f = 8,33 ГГц

Заключение

Таким образом, в ходе выполнения выпускной квалификационной работы магистра показана возможность создания резонатора на основе волноведущей секции с помещенной внутрь структурой, состоящей из поликоровой пластины и нанесенного на неё нанометрового проводящего слоя.

Были рассчитаны резонаторы на основе двух типов волноводов:

- прямоугольный волновод

- отрезок коаксиальной линии передачи.

Смоделирован микрокоаксиальный зонд ближнеполевого СВЧмикроскопа с резонатором в виде отрезка прямоугольного волновода.

Проведен расчет амплитудно-частотной характеристики при помещенной в волновод структурой, состоящей из поликоровой пластины с напыленным нанометровым проводящим слоем. Для определения возможности измерения параметров диэлектрических материалов была проведена параметризация:

 – действительной части диэлектрической проницаемости измеряемого материала,

-мнимой части диэлектрической проницаемости измеряемого материала.

Проведено экспериментальное исследование амплитудно-частотных характеристик микрокоаксиального зонда ближнеполевого СВЧ-микроскопа с резонатором в виде отрезка волновода с помещенной в него структурой, состоящей из поликоровой пластины с напыленным нанометровым проводящим слоем.

Список используемых источников

- 1. Ближнеполевая сканирующая СВЧ-микроскопия и области ее применения / Д.А. Усанов. Саратов: Изд-во Сарат. ун-та, 2010. 100 с.
- Near-field microwave microscopy of materials properties" in Microwave Superconductivity / S.M.Anlage, D.E.Steinhauer, B.J.Feenstra et al. / Eds. H. Weinstock and M. Nisenoff. – Amsterdam. The Netherlands: Kluwer, 2001. – P. 239–269.
- Усанов Д.А., Горбатов С.С. Резонансы в системе диафрагма– короткозамыкающий поршень // Изв. вузов. Радиофизика. – 2001. – Т.44, № 12. – С. 1046–1049.
- Усанов Д.А., Горбатов С.С. Волноводный измерительный резонатор // Изв. вузов. Радиоэлектроника. – 2002. – Т.45. – № 9. – С. 26–28.
- Kleismit R. A., Kazimierczuk M. K. and Kozlowski G. Sensitivity and Resolution of Evanescent Microwave Microscope // IEEE Transactions on Microwave Theory and Techniques. – 2006. – Vol. 54. – N 2. – P. 639–647.
- S.M. Anlage, D.E. Steinhauer, B.J. Feenstra, C.P. Vlahacos, F.C. Wellstood. Near-Field Microwave Microscopy of Materials Properties // Microwave Superconductivity. — Amsterdam. — 2001. — P. 239-269.
- T. Norokido, I. Bac, K. Mirumo. scanning Near-Field Millimeter-Wave Microscopy Using a Metal Hit as a Scanning Probe // IEEE Trans. on Microwave Theory and Techniques, 2001. — V.49. — № 3. — P. 491-499.
- M. Gobovsky, A. Galkin, D. Davidov. High-spatial resolution resistivity mapping of large-area YBCO films by a near- field millimeter-wave microscope // IEEE Trans. On Microwave Theory and Techniques, 1996. — V. 44. — № 7. — P. 1390-1392.
- Ближнеполевая СВЧ микроскопия и области ее применения Д.А. Усанов Саратов: Изд-во Сарат. ун-та, 2010. – 100 с.