Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра физики полупроводников

Влияние частоты и мощности накачки на процесс распространения волн пространственного заряда в тонкопленочных полупроводниковых структурах на основе n-GaAs, n-InP и n-GaN

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента 2 курса 202 группы

направления 11.04.04 «Электроника и наноэлектроника»

факультета нано - и биомедицинских технологий

Дудкина Андрея Михайловича

Научный руководитель

доцент, к.ф.-м.н., доцент

должность, уч. степень, уч. звание

подпись, дата

С.А. Сергеев инициалы, фамилия

.

Заведующий кафедрой

д.ф.-м.н., профессор

должность, уч. степень, уч. звание

подпись, дата

А.И. Михайлов инициалы, фамилия

Саратов 2018

введение

Общая характеристика работы.

Актуальность исследования. В настоящее время большой интерес устройств представляет создание на основе тонкопленочных отрицательной полупроводниковых структур с дифференциальной проводимостью, имеющей место в таких полупроводниках, как n-GaAs, n-InP и n-GaN. Это связано с особенностями распространения в них ВПЗ в условиях разогрева электронов в сильных электрических полях. Подобные структуры могут быть использованы для создания интегральных устройств обработки сигналов вплоть до миллиметрового диапазона длин волн, выполняющих такие радиотехнические функции, как усиление, генерация, фазы задержка И изменение сигнала, управляемая фильтрация, преобразование и синтез частот.

собственных Распространение тонкопленочных волн В полупроводниковых структурах отрицательной дифференциальной с проводимостью к настоящему времени достаточно хорошо исследовано [1]. Известна общая теория [2], проведен анализ при частоте накачки, равной 4] параметрического [3, взаимодействия граничной частоте волн пространственного заряда в тонкопленочных полупроводниковых структурах с отрицательной дифференциальной проводимостью. В то же время влияние параметров полупроводниковой структуры и сигналов, подаваемых на нее, изучено недостаточно.

Цель и задачи магистерской работы. Целью магистерской работы является исследование влияния мощности и частоты накачки на процессы параметрического взаимодействия волн пространственного заряда в тонкопленочных структурах на основе n-GaAs, n-InP и n-GaN.

Для достижения поставленной цели решались следующие задачи: – Проведение литературного обзора по соответствующей тематике;

– Анализ влияния параметров накачки на параметрическое взаимодействие волн пространственного заряда в тонкопленочных структурах на основе n-GaAs, n-InP или n-GaN.

2

Проведение сравнительного анализа перспектив применения n-InP и n-GaN
 в устройствах на волнах пространственного заряда.

Структура и объем работы

Кроме ВВЕДЕНИЯ, ЗАКЛЮЧЕНИЯ, СПИСКА ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ И ПРИЛОЖЕНИЯ работа включает 5 основных разделов:

1 Волны пространственного заряда в полупроводниковых структурах с отрицательной дифференциальной проводимостью

2 Общая теория параметрического взаимодействия ВПЗ в ТПС с ОДП. Вывод основных уравнений

3 Методика расчета коэффициентов усиления и преобразования

4 Результаты расчета

5 Перспективы использования фосфида индия и нитрида галлия для функциональных устройств на волнах пространственного заряда.

Общий объем работы составляет 52 страницы и включает 19 рисунков.

Положение, выносимое на защиту. Установлено, что по ряду параметров InP и GaN имеют преимущество над традиционным GaAs, то есть эти материалы являются перспективными для использования в приборах на волнах пространственного заряда коротковолновой части CBЧ диапазона.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении описана актуальность темы исследования, раскрыта новизна работы, а так же сформированы цель и задачи исследования.

В разделе 1 проводится анализ литературы по теме исследований, рассматривается распространение волн пространственного заряда в тонкопленочных полупроводниковых структурах n-GaAs, n-InP и n-GaN.

В разделе 2 рассмотрена общая теория параметрического взаимодействия ВПЗ в ТПС с ОДП и проведен вывод основных уравнений для расчета.

Третий раздел посвящена методике расчета коэффициентов усиления и преобразования.

3

В разделе 4 приведены результаты проведенных расчетов.

На рисунке 1 приведена зависимость коэффициентов усиления K_a (сплошная кривая) и преобразования K_t (пунктирная) от координаты z.

Рисунок 1 – Зависимость K_a и K_t от координаты z (GaAs f_s = 35 ГГц, f_p = 28 ГГц, P_p = P_{pmax} = 0,0011 мВт).

По мере распространения вдоль оси z сигнальная и холостая ВПЗ периодически обмениваются мощностью, сохраняя общую тенденцию роста амплитуды обеих волн. На конце участка (z = 50 мкм) величины K_a(z) и K_t(z) становятся положительными, что свидетельствует об эффективной параметрической связи ВПЗ сигнальной и холостой частот. Меняя параметры структуры, амплитуду и частоту накачки, можно управлять значениями коэффициентов на выходе (на длине 50 мкм) (рисунок 2, 3).

Рисунок 2 – Зависимость K_a от координаты z (GaAs $f_s = 35 \ \Gamma \Gamma \mu$, $f_p = 28 \ \Gamma \Gamma \mu$, $P_p = P_{max} = 9,34 \cdot 10^{-3}(1)$; $5 \cdot 10^{-3}(2)$; $1 \cdot 10^{-3}(3)$; $1 \cdot 10^{-4}(4)$; 0(5)).

Рисунок 3 – Зависимость K_t от координаты z (GaAs $f_s = 35$ ГГц, $f_p = 28$ ГГц, $P_p = P_{max} = 9,34 \cdot 10^{-3}$ (1); $5 \cdot 10^{-3}$ (2); $1 \cdot 10^{-3}$ (3); $1 \cdot 10^{-4}$ (4); 0(5)).

На рисунке 4 наблюдается максимум при $f_p \approx \frac{1}{2} f_s$. Также можно отметить резко выраженные минимумы, в которых небольшое изменение частоты накачки приводит к значительному изменению коэффициентов. Зависимость K_a и K_t от мощности накачки (рисунок 5) характеризуется общей тенденцией роста при наличии нескольких максимумов.

Рисунок 4 — Зависимость K_a и K_t от частоты накачки (GaAs f_s = 35 ГГц, P_p = 6,34·10⁻⁵ мВт).

По данным зависимостям можно определить диапазоны наиболее эффективной работы устройства в качестве параметрического усилителя или

управляемого фильтра. Перестройкой частоты и мощности накачки можно управлять амплитудой волны на частоте сигнала на выходе.

Рисунок 5 – Зависимость коэффициентов усиления K_a и преобразования K_t от мощности накачки (GaAs $f_s = 35 \Gamma \Gamma \mu$, $f_p = 28 \Gamma \Gamma \mu$, $P_{pmax} = 0,0011 \text{ MBT}$).

Все приведенные выше зависимости получены для n-GaAs. Однако использование n-InP сулит целый ряд преимуществ. Граничная частота усиления ВПЗ в нем достигает 80 ГГц против 31 ГГц у n-GaAs при одинаковом уровне легирования. Энергетический зазор между G и L долинами у n-InP – 0,53 эB, против 0,31 для арсенида галлия. В результате этого протяженность падающего участка на BAX также существенно больше.

Зависимости коэффициентов усиления и преобразования от параметров полупроводниковой структуры, а также амплитуды и частоты накачки для n-InP приведены на рисунках 6-10.

Видно, что эффективное усиление и автодинное преобразование сигнала наблюдается на частотах вплоть до 100 ГГц, а на зависимости существуют участки, где небольшое изменение частоты накачки приводит к изменению коэффициентов на 40 дБ. Таким образом, эффективность фильтрации сигнала структурами на основе n-InP также существенно выше.

Рисунок 6 – Зависимость K_a и K_t от z (InP f_s = 100 ГГц, f_p = 75 ГГц, P_p = P_{max} =

Рисунок 7 – Зависимость K_a от z ($P_p = P_{max} = 7,39 \cdot 10^{-2}$ (1); $1 \cdot 10^{-2}$ (2); $3 \cdot 10^{-3}$ (3);

Рисунок 8 – Зависимость K_t от z ($P_p = P_{max} = 7,39 \cdot 10^{-2}$ (1); 1·10⁻² (2); 3·10⁻³ (3);

Рисунок 9 – Зависимость K_a и K_t от частоты накачки (InP f_s = 100 ГГц,

 $P_p = 4,59 \cdot 10^{-4} \text{ MBT}$).

Рисунок 10 – Зависимость K_a и K_t от мощности накачки (InP f_s = 100 ГГц, f_p = 90 ГГц).

Видно, что по мере распространения вдоль оси z сигнальная и холостая ВПЗ периодически обмениваются мощностью, сохраняя общую тенденцию роста амплитуд обеих волн. На конце участка (z = 50 мкм) $K_a(z)$ и $K_t(z)$ могут становиться положительными, что свидетельствует об эффективной параметрической связи ВПЗ сигнальной и холостой частот. Существуют участки, где значения K_a и K_t лежат ниже штрихпунктирной линии. То есть, подача накачки может приводить и к ослаблению ВПЗ сигнала. При определенных значениях P_p K_a , K_t на конце участка взаимодействия (z = 50 мкм) могут стать положительными, а амплитуда сигнальной и холостой ВПЗ составляют величины одного порядка. Таким образом, параметрический механизм взаимодействия ВПЗ в ТПС с ОДП может быть основой создания активных смесителей 8-мм диапазона.

В разделе 5 рассмотрены перспективы использования фосфида индия и нитрида галлия для функциональных устройств на волнах пространственного заряда

Проведен литературный обзор параметров и характеристик соединений А₃В₅ для выяснения перспектив их использования в устройствах на ВПЗ.

Некоторые наиболее важные параметры и характеристики соединений представлены в таблице 1.

	GaAs	InP	GaN
$\Delta \mathrm{E}_{g},$ $\mathrm{3B}$	1,42÷1,46	1,34÷1,432	3,22÷3,302 (3,39÷3,51)
m_{Γ}/m_0	0,063÷0,072	0,062÷0,082	0,133÷0,15 (0,19÷0,22)
$m_{\rm X}/m_0$	0,39÷0,58	0,32÷0,88	0,23÷0,3
$m_{ m L}/m_0$	0,17÷0,35	0,23÷0,47	0,34÷0,5
$\Delta_{\Gamma \mathrm{X}},$ э B	0,33÷0,52	0,8÷0,96	0,969÷1,22
$\Delta_{\Gamma L}$, $\Im { m B}$	0,28÷0,33	0,51÷0,6	2,269÷2,299
3	12,5÷13,5	11,93÷12,61	9,5÷9,95 (8,9÷10,4)
<i>k</i> , Вт/ (см·°С)	0,45÷0,54	0,68	1,3÷1,7 (1,95)
$E_{\rm пр},{ m B/cm}$	4.10^{5}	$5 \cdot 10^5$	33·10 ⁵ (50·10 ⁵)
<i>Т</i> _{пл} , К	1510	1327	1773÷2273
ρ, г/см ³	5,317÷5,37	4,79÷4,81	6,087÷6,15 (6,087÷6,15)
Твердость по Моосу	4÷5,5	5	6
<i>a</i> , Å	5,653÷5,654	5,8687÷5,869	4,5÷4,52

Таблица 1 – параметры и характеристики соединений

В таблице 2 приведены наиболее значимые в свете применения в устройствах на ВПЗ характеристики соединений. В таблице 3 проводится сравнение основных электрофизических параметров *GaAs*, *InP* и *GaN* с точки зрения их использования для создания СВЧ приборов («++» – существенное преимущество, «+» – достоинство, «±» – среднее значение, «–» – недостаток).

-						
		GaAs	InP	GaN		
<i>v</i> ₀ , см/с		$(1,5\div1,7)\cdot10^7$	$(2,0\div2,3)\cdot10^7$	$(2,35\div2,8)\cdot10^7$ $(2,8\cdot10^7)$		
		(<i>E</i> ₀ =5,5 кВ/см)	(<i>E</i> ₀ =18,5 кВ/см)	(<i>E</i> ₀ =200 кВ/см)		
<i>D</i> , см²/с		142÷500	40÷118	22÷25 (25)		
		$(E_0 = 5,5 \text{ кB/см})$	(<i>E</i> ₀ =18,5 кВ/см)	$(E_0 = 200 \text{ кB/см})$		
$E_{\text{пор}}, \kappa \text{B/cm}$		3,2÷3,5	10÷10,5	80÷150 (150÷200)		
$ au_M$, c		6·10 ⁻¹²	3.10-12			
τ_{Δ}, c		$(1,48\div1,5)\cdot10^{-12}$	$0,75 \cdot 10^{-12}$			
$ au_{NDR}, c$		$(7,5\div9,4)\cdot10^{-12}$	3,75.10-12	$0,25 \cdot 10^{-12} (1,4 \cdot 10^{-12})$		
$v_{\rm max} / v_{\rm min}$		2÷2,4	3÷4	2,1÷2,2 (1,45÷1,5)		
$\frac{\left \mu_{d}\right _{\max},}{cM^{2}/B\cdot c}$		2400÷2500	1190÷2000	110÷220 (50)		
$(n_0 d)_{\kappa p}, \mathrm{cm}^{-2}$		$2,745 \cdot 10^{10}$	4,4016·10 ¹⁰	$38,034 \cdot 10^{10} \\ (167,356 \cdot 10^{10})$		

Таблица 2 – наиболее значимые в свете применения в устройствах на ВПЗ характеристики соединений

Таблица 3 – сравнение основных электрофизических параметров *GaAs*, *InP* и *GaN* с точки зрения их использования для создания СВЧ приборов

	Параметр								
	v_0	D	$E_{ m nop}$	τ _{NDR}	$\frac{v_{\rm max}}{v_{\rm min}}$	k	E_{np}	$\left \mu_{d}\right _{\max}$	$(n_0 d)_{\kappa p}$
GaAs	±	_	+	±	+	_	±	+	±
InP	+	+	±	+	++	+	±	+	+
GaN	++	++	_	++	+	++	++	_	++

На рисунке 11 приведены частотные зависимости реальных (сплошные кривые) и мнимых (пунктирные) частей дифференциальной подвижности электронов для *n-GaAs* при $E_0 = 5,5$ кВ/см (рисунок 11 (а)), *n-InP* при $E_0 = 18,5$ кВ/см (рисунок 11 (б)), *n-GaN* – $E_0 = 200$ кВ/см (кривая 1, рисунок 11 (в)) и *n-InN* – $E_0 = 90$ кВ/см (кривая 2, рисунок 11 (в)) и $E_0 = 140$ кВ/см (кривая 3, рисунок 11 (в)), которые будут использоваться при исследовании распространения параметрического взаимодействия ВПЗ в рассмотренных соединениях.

Таким образом, проведенный сравнительный анализ основных свойств соединений A₃B₅ показал, что *GaN* и *InP* являются перспективными

Рисунок 11 – частотные зависимости реальных (сплошные кривые) и мнимых (пунктирные) частей дифференциальной подвижности электронов для *n*-

GaAs.

ЗАКЛЮЧЕНИЕ

В результате выполнения магистерской работы можно сделать следующие выводы:

1. Максимальное увеличение верхнего частотного предела усиливаемых ВПЗ в ТПС с ОДП при параметрическом взаимодействии в условиях низкочастотной накачки наблюдается при $f_p \approx f_c$ и составляет для n-GaAs примерно 27,3 % (до 39,8 ГГц), для n-InP – примерно 31,6 % (до 106,4 ГГц) и для n-GaN – примерно 13,4 % (до 55,52 ГГц).

2. Амплитуда ВПЗ холостой частоты на конце участка параметрического взаимодействия может достигать величин того же порядка, что и амплитуда сигнальной ВПЗ, при этом может быть получено автодинное преобразование при частоте входного сигнала для n-GaAs примерно до 48 ГГц, n-InP – до 107,5 ГГц, n-GaN – до 61 ГГц. Таким образом, параметрический механизм взаимодействия ВПЗ в ТПС с ОДП может быть основой создания активных смесителей коротковолновой части СВЧ диапазона.

3. Изменение амплитуды накачки на входе, или ее частоты, приводит к значительному (до 40-50 дБ) изменению коэффициентов К_а и К_t.

4. Показано, что по ряду параметров InP и GaN имеют преимущество над традиционным GaAs, то есть эти материалы являются перспективными для использования в приборах на ВПЗ коротковолновой части CBЧ диапазона.