Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра динамического моделирования и биомедицинской инженерии наименование кафедры

«Реографическое исследование сердечнососудистой системы при нагрузочном тестировании»

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

	хнологии»
и паимелование направления	
но- и биомедицинских т	гехнологий
аименование факультета	
ецова Антона Андрееви	ча
фамилия, имя, отчество	VANC
No.	THE PARTY OF THE P
дата, полицсь	М.Ю. Калинкин инициалы, фамилия
-603-01-010-010-0	manana, quantum
1000	
	аименование факультета ецова Антона Андрееви

Саратов 2018 г.

Введение

Сердечнососудистые заболевания, являются главным и основным фактором высокого уровня смертности населения в России. В последние годы наблюдается динамичное распространение ССЗ среди населения РФ.В настоящее время по некоторым данным динамика зарегистрированных больных, их численность по сравнению с 1990 г. возросла более чем в 2 раза.

Таким образом, актуальны методы, которые исследуют деятельность сердца (ЭКГ), сосудов (РГК), регуляторной системы (тренированность, толерантность, трудоспособность), позволяющие в будущем преодолеть уровень заболевания сердечнососудистой системы, смертность, нетрудоспособность, демографический спад.

Существуют математические модели кровотока в виде дифференциальных уравнений, которые решаются численно. В данной работе рассматривается одна из таких моделей - модель Франка.

Импедансная реокардиография — это простой, недорогой, неинвазивный метод изучения центральной гемодинамики, который может быть использован для анализа сердечнососудистой системы с целью снижения смертности от данного типа заболеваний. Современные математические методы обработки данных позволяют открыть новые возможности анализа реограмм.

В настоящее время развиваются автоматизированные системы управления (АСУ) и автоматизированные системы научных исследований (АСНИ). Преимущества таких систем перед традиционными измерительными приборами заключаются в технологии виртуальных приборов. Разработчик в данной среде имеет возможность получать и передавать сигналы от внешнего измерительного устройства в компьютерную среду обработки. Такой подход гибко проводить позволяет И анализировать результаты научного эксперимента, получать временным разрешением, данные с высоким обрабатывать сигнал существующими математическими алгоритмами.

Целью данной работы является применить математический метод определения эластических и резистивных параметров сосудов при различных степенях физической нагрузки.

Для достижении цели, были поставлены следующие задачи:

- -провести обзор литературы по математическому моделированию кровотока;
- смоделировать реограмму путем численного решения математической модели пульсации давления в упругом резервуаре;
- методом обработки реографического сигнала по двум областям (систоле и диастоле) рассчитать параметры эластичности С и периферического сопротивления R кровеносных сосудов упругого резервуара на смоделированном сигнале;
- -провести реографические исследования и записать сигнал в области аорты у нескольких испытуемых при проведении нагрузочной пробы;
- -проанализировать изменения периферического сопротивления сосудов при нагрузочном тестировании.

Основное содержание работы

На первом этапе данной квалификационной магистерской работе была проведена функциональная диагностика в покое и с нагрузочной пробой.

Исследуемые пациенты в возрасте 20-23 года мужского и женского пола совершали приседания в течение 4 и 6 минут. Ступенчатое увеличение нагрузки, индивидуально для каждого, были согласованы следующим образом. Для юноши: первые 2 минуты совершал приседания каждые 10 секунд (6 приседаний в минуту); вторые 2 минуты каждые 7,5 секунд (9 приседаний в минуту). Для девушки соответственно: каждые 20 секунд (3 приседания в минуту); каждые 10 секунд (6 приседаний в минуту); каждые 7,5 секунд (9 приседаний в минуту).

В течение всего периода времени, включающий в себя 1 минуту покоя и 4-6 минут физической нагрузки, с помощью реографического комплекса «Рео-Спектр» регистрировалась реограмма. Далее используя программное обеспечение прибора проводился анализ реосигнала на каждом его участке в соответствии с периодом приседаний, и вычислялись показатели УОК, МОК и ЧСС. Результаты одного из испытуемых смотрите ниже на рис.1 и таблице 1.

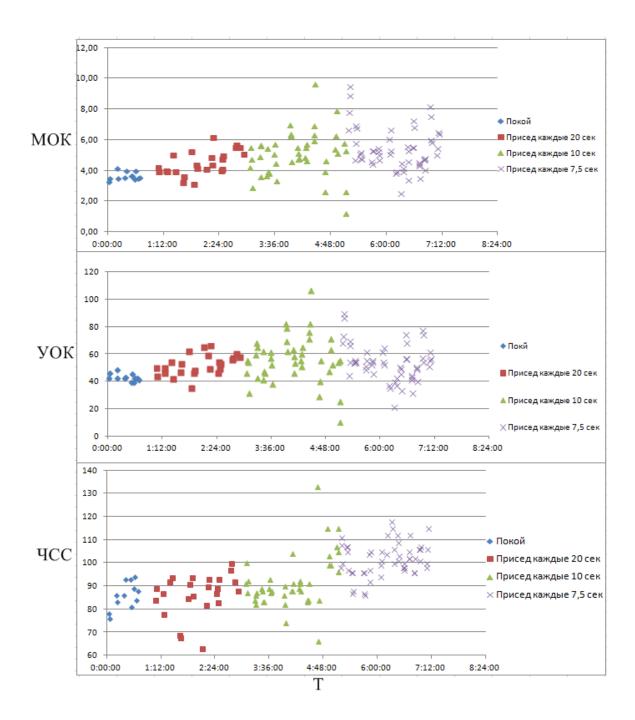


Рис.1. Показатели гемодинамики, зафиксированные при функциональной диагностике у девушки.

В таблице видна следующая закономерность. При увеличении нагрузки из состояния покоя ЧСС практически не изменилось, а УОК возрос от 43 до 52, что привело к увеличению МОК. Т.е при не больших физических нагрузках увеличение кровотока происходило за счет изменения ударного объема.

	∆ ЧСС	∆ УОК, мл.	∆ МОК, л/мин.
Покой	86±6	43 <u>±</u> 3	3,6±0,3
Присед каждые 20 сек.	86 <u>±</u> 9	52 <u>±</u> 8	4,5±0,8
(слабая нагрузка)			
Присед каждые 10 сек.	92 <u>±</u> 12	56±17	5,1±1,5
(умеренная нагрузка)			
Присед каждые 7,5	102 <u>+</u> 7	54±13	5,4±1,4
сек.			
(Высокая нагрузка)			

Таблица 1. Средние значения показатели гемодинамики, зафиксированные при функциональной диагностике у девушки.

Напротив, при высоком уровне нагрузки УОК практически не изменяется (от56 –до 54), а ЧСС возросло от 92 – 102, что привело к увеличению МОК. То есть при высокой физической нагрузке МОК растет за счет увеличения ЧСС.

На втором этапе в данной работе проводилось моделирование изменения давления в большом круге кровообращения на основе уравнения упругого резервуара Отто Франка. С помощью математического пакета *MathCad* мы строим графики: давление от времени и кровоток от времени.

Для этого, используя литературные источник, были заданны следующие параметры. Длительность сердечного цикла $t_hb=1$ сек.; длительность систолы $t_s=0.33$ сек.; момент времени максимального кровотока $t_max=0.09$ сек; максимальный кровоток в аорте $q_max=0.5$ л/с; сопротивление мелких сосудов $r_s=1.086*10^3$ мм.рт.ст/(л/с); емкость сосудов большого круга $t_s=1.64*10^3$ л/мм.рт.ст.; постоянная времени спада $t_s=1.738$ сек.; полный период сигнала $t_s=20$ сек.; $t_s=0.0$ начало отсчета; число точек $t_s=0.0$ 3.

Уравнение, которое определяет зависимость системного артериального давления от времени (уравнение Франка):

$$\frac{d}{dt}p_{sa}(t) = \frac{1}{c_{sa}} \left(q_{1}(t) - \frac{P_{sa}}{r_{s}} \right)$$
 (2)

Массив давления:

$$P_{sa} := P_{sa_0} \leftarrow 0$$
for $i \in 0...N - 1$

$$P_{sa_{i+1}} \leftarrow \frac{P_{sa_i} + \frac{dt \cdot Q_{a_i}}{c_{sa}}}{1 + \frac{dt}{r_{s} \cdot c_{sa}}}$$

$$P_{sa} = \frac{P_{sa_i} + \frac{dt \cdot Q_{a_i}}{c_{sa}}}{1 + \frac{dt}{r_{s} \cdot c_{sa}}}$$

$$P_{sa} = \frac{P_{sa_i} + \frac{dt \cdot Q_{a_i}}{c_{sa}}}{1 + \frac{dt}{r_{s} \cdot c_{sa}}}$$
(3)

Аналогично для массива с кровотоком, которая задается как функция времени:

$$Q_L(t) = \begin{cases} Q_{max} \cdot t/T_{max} &, & 0 \le t \le T_{max} \\ Q_{max} \cdot (T_S - t)/(T_S - T_{max}) &, & T_{max} \le t \le T_S \\ 0 &, & T_S \le t \le T \end{cases}$$
(4)

Далее будем работать с кровотоком и давлением одного произвольного кардиоцикла и выделим на этом участке начало и конец экспоненциального приближения в виде точек.

Формулу для вычисления емкости сосудов большого круга мы получаем, проинтегрировав уравнение Франка (2):

$$C := \frac{S_q}{P_{\text{puls}} + \frac{1}{t_{\text{av}}} * S_p} \tag{5}$$

, где S_q - сумма точек кровотока на всем временном интервале систолы; P_{puls} - пульсовое давление; tau - постоянная времени спада; S_p - сумма точек давления на всем временном интервале систолы.

$$tau := \frac{t_{start} - t_{finish}}{\ln(\frac{P_{sa_{finish}}}{P_{sa_{start}}})} = 1.745$$
 (6)

, где t_start - время начало диастолы; t_finish - время окончания диастолы; P_sa_finish - давление в конце диастолы; P_sa_start - давление в начале диастолы.

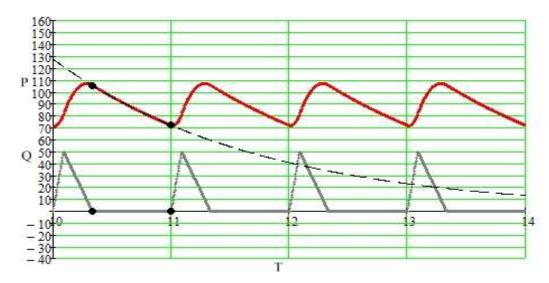


Рис.2. График кровотока и давления с наложенной экспонентой.

$$C := \frac{S_q}{P_{\text{puls}} + \frac{1}{\text{tau}} * S_p} = 1.6 * 10^{-3}$$
 (7)

Данное значение совпало с значением заложенное в модели, что говорит о правильности данного метода для расчета эластичности.

мы можем вычислить и сопротивление сосудов:

$$R := \frac{\text{tau}}{C} = 1.092 * 10^3 \tag{8}$$

Третьим этапом данной работы является математическая обработка экспериментальной реограммы испытуемого.

Сначала производилась регистрация сигнала в покое и после физических нагрузок с помощью стенда для биомедицинских измерений KL-720. Исследование сигналов проводилось у одного из испытуемых (девушки).

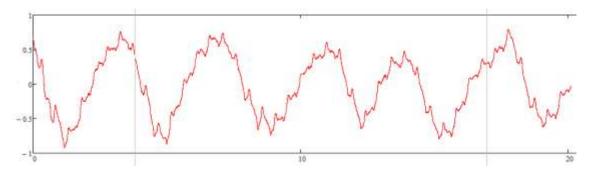


Рис.3. Реограмма в покое.

Мы использовали оператор сглаживания- *ksmooth*, основанный на функции Гаусса, для того чтобы убрать наложенный на график дыхательные колебания.

Чтобы продолжить анализировать экспериментальную реограмму в покое, нужно преобразовать сигнал из зависимости сопротивления (Ом) от времени (сек.) в зависимость давление (мм.рт.ст.) от времени.

Из графика выделяем сопротивления в момент систолы и диастолы.

С помощью системы уравнений с двумя неизвестными мы смогли преобразовать сопротивление в давление:

$$\begin{cases} P_{sist} = A * \rho_{sist} + B \\ P_{diast} = A * \rho_{diast} + B \end{cases}$$
 (9)

Используя данную систему, систолическое давление составило 119.987(мм.рт.ст), а диастолическое 80.037 (мм.рт.ст)

Аналогичная последовательность соблюдается при анализе реосигналов испытуемой после нагрузок.

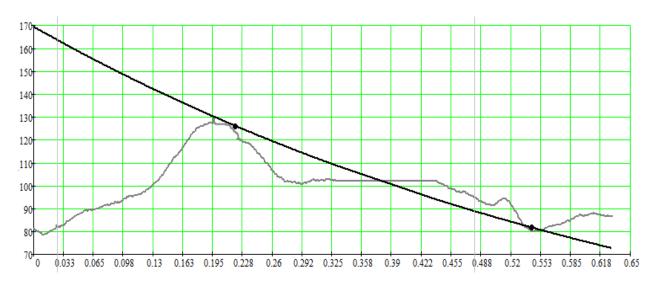


Рис.4. Давления на одном кардиоцикле при умеренной нагрузке (приседания раз в 10 сек.).

	ЧСС,	t _{sist} ,	t _{diast} ,	ПД,	τ,	УОК,	C,	$R=\tau/C$,
	1/сек	сек	сек	см.рт.ст	сек	МЛ	л/мм.рт.ст	мм.рт.ст/(
								л/с)
Присед каждые	107	0.21	0.35	47	0.76	52	$7.1*10^{-4} \pm 0.5$	1100±100
20 сек.								
(слабая								
нагрузка)								
Присед каждые	115	0.2	0.32	46	0.72	56	$7.5*10^{-4} \pm 0.5$	1000±100
10 сек.								
(умеренная								
нагрузка)								
Присед каждые	122	0.2	0.29	47	0.59	54	6.8 *10 ⁻⁴ ±	900±100
7.5 сек.							0.5	
(высокая								
нагрузка)								

Таблица.2.Показатели гемодинамики и параметры сосудов.

Показатели ПД получены с помощью тонометра, а УОК с помощью установки "Рео-спектр".

Проанализируем параметры τ - постоянная времени спада, C -сосудистое емкостное сопротивление (эластичность) и R – сосудистое периферическое

сопротивление. С ростом нагрузки параметр т уменьшается. Это объясняется сокращением времени диастолы при увеличении ЧСС. Судя по табличным данным (таблица 2) изменение С при росте физической нагрузки не происходит. Не исключено что, С изменяется на небольшую величину, но, которая меньше чем погрешность измерения. С ростом нагрузки достоверно уменьшается периферическое сопротивление сосудов R. Это можно объяснить следующим образом. Необходимо чтобы приток крови в артериальные сосуды, был равен оттоку крови от них в сосуды малого диаметра (артериолы, капилляры). С ростом физической нагрузки возрастает приток крови, а, следовательно, должен возрасти Для И отток В капилляры. ЭТОГО периферическое сопротивление капилляров должно уменьшиться.

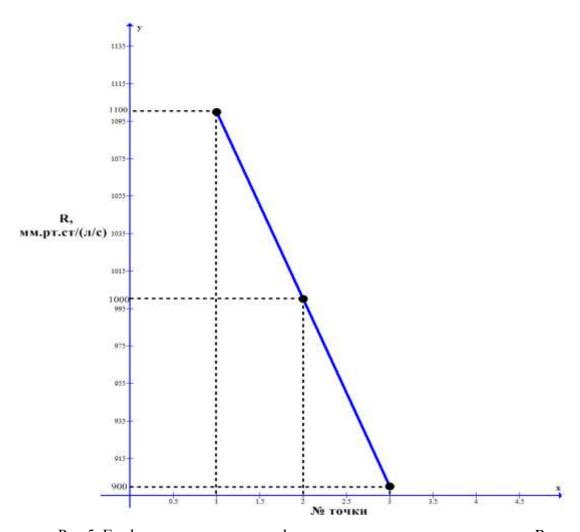


Рис. 5. График зависимости периферического сопротивления сосудов R.

Заключение

Была рассмотрена математическая модель упругого резервуара Отто Ф ранка при пульсирующем кровотоке от левого желудочка сердца в большой круг кровообращения.

Численным методом решены уравнения и получены графики давления и кровотока от времени.

Аналитические выведен метод нахождения параметров эластичности кровеносных сосудов С и их периферическое сопротивление R, по зависимости давления от времени. Проведен расчет указанных параметров по смоделированному сигналу с помощью математического пакета *MathCad*.

На двух испытуемых проведено нагрузочное тестирование с измерениями артериального давления и параметров центральной гемодинамики с помощью реографического комплекса «Рео-Спектр».

С помощью технологии сбора данных и автоматизации научных исследований NI ELVIS в программной среде LabVIEW был зарегистрирован сигнал реографа стенда биомедицинских измерений (KL-720).

Проведена математическая обработка реосигнала в программной среде *MathCad*.

Выявлено уменьшение периферического сопротивления сосудов при физической нагрузке.