Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра физики полупроводников

Исследование параметров двойных гетероструктур блоков лазерных диодов для импульсных излучателей

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента 2 курса 204 группы

направления 22.04.04 «Материаловедение и технологии материалов» факультета нано- и биомедицинских технологий

Горелова Андрея Павловича

Научныи руководитель		
Доцент, к.фм.н., доцент		С.А. Сергеев
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
Консультант		
Ведущий инженер		
ООО "НПП "Инжект"		И.В. Митин
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
Зав. кафедрой		
д.фм.н., профессор		А.И. Михайлов
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия

ВВЕДЕНИЕ

Полупроводниковый лазер или же полупроводниковый квантовый генератор — лазер с полупроводниковым кристаллом в качестве рабочего вещества. Главным отличием полупроводникового лазера от лазеров иных типов состоит в том, что в нем используются излучательные квантовые переходы между разрешенными энергетическими зонами кристалла, а не между изолированными уровнями энергии атомов, молекул и ионов [2]. Таким образом, атомы кристаллической решетки в полупроводниковых лазерах возбуждаются и излучают фотоны коллективно.

Для ряда областей применения полупроводниковых лазеров важнейшей задачей является получение мощных лазеров с заданными плотностями излучения. В силу выше указанных недостатков полупроводниковых лазеров одним из путей решения этой задачи является создание многокристальных и многоблочных лазерных излучателей.

Общая характеристика работы.

Актуальность темы. Мощные лазерные диоды применяются в различных лазерных системах: системах накачки твердотельных и волоконных лазеров. По сравнению с ламповыми устройствами накачки лазерные диоды обеспечивают максимальный КПД накачки, высокие эксплуатационные характеристики и значительный срок службы. Большая мощность излучения лазерных диодов позволяет их использовать для создания лазерных приборов, широко применяемых в системах обеспечения безопасности, связи, технологии, медицине и др. Малое тело свечения лазерных диодов позволяет эффективно в оптическое волокно. Bce вводить его излучение ЭТО определяет эффективность создания полупроводниковых лазеров в качестве отдельных излучателей.

Цель и задачи магистерской работы. Целью данной магистерской работы является получение оптимальных гетероструктур для импульсных лазерных полупроводниковых излучателей с необходимыми значения

мощности, расходимости, длины волны, ватт-амперными, вольт-амперными характеристиками, обеспечивающими заданные параметры мощным лазерным излучателям, собранным на их основе.

Для достижения поставленной цели решались следующие задачи:

- 1. изучить литературу по теме полупроводниковых лазеров на двойных гетеропереходах, в том числе иностранную;
- 2. изучить основные методы выращивания структур, рассмотреть варианты сборки и отбора многоэлементных излучателей;
- 3. провести испытания на образцах, выявить зависимость между составом гетероструктуры и ее параметрами;
- 4. рассмотреть методы предварительной оценки параметров структуры, применить их к современным структурам.

Структура магистерской работы. Кроме ВВЕДЕНИЯ, ЗАКЛЮЧЕНИЯ, СПИСКА и ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ работа включает 5 основных разделов:

- 1 Создание инверсной населенности в полупроводниках
- 2 Физические основы работы полупроводниковых лазеров
- 3 Основные этапы технологии и особенности конструкции полупроводниковых лазеров
 - 4 Основные параметры и характеристики полупроводниковых лазеров
 - 5 Измерение параметров и характеристик полупроводниковых лазеров

Положение, выносимое на защиту. Выявлено, что низкотемпературная технология выращивания лазерных структур более предпочтительна в сравнении с высокотемпературной, так же было выявлено что у партий лазерных структур, имеющих оптимальную конструкцию, содержание

алюминия в эмиттерах составило 23 - 24 %, а толщина активной области порядка $0.08 \div 0.11$ микрометров.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В разделе 1 приводится теоретический обзор метода создания инверсной населенности в полупроводниках.

В данном разделе сообщается, что для процесса излучательной рекомбинации необходимо выполнить два условия. Во-первых, электрон и дырка должны локализоваться в одной и той же точке координатного пространства. Во-вторых, электрон и дырка должны иметь одинаковые по значению и противоположно направленные скорости. Иными словами, электрон и дырка должны быть локализованы в одной и той же точке к-пространства [3]. Так как импульс образующегося в результате рекомбинации электронно-дырочной пары фотона значительно меньше по сравнению с квазиимпульсами электрона и дырки, то для выполнения закона сохранения квазиимпульса требуется обеспечить равенство квазиимпульсов электрона и дырки, участвующих в акте излучательной рекомбинации.

В дальнейшем, в разделе делается вывод, что для получения излучательной рекомбинации необходим прямозонный полупроводник, например, GaAs. Придерживаясь строгой теории можно доказать, что инверсная населенность возможна лишь при условии Ec - Eg < Fn - Fp [4].

Так же отмечается, что на практике способами создания инверсной населенности являются: 1) возбуждение за счет инжекции неосновных носителей через p-n переход; 2) возбуждение электронным лучом; 3) возбуждение в сильном электрическом поле [5].

В разделе 2 приводится описание физических принципов работы полупроводниковых лазеров.

В разделе рассказывается, что принцип действия полупроводниковых лазеров как источников когерентного излучения основан на рекомбинационном излучении за счёт возбуждения электронов и дырок в полупроводнике при прохождении тока через p-n переход, смещённый в прямом направлении [6].

Так же в разделе рассказываются основные причины потери мощности в полупроводниковых квантовых генераторах.

В разделе сообщается что в настоящее время наиболее разработана структура $GaAs - A1_xGa_{1-x}As$. Существует две основные лазерные структуры на основе $GaAs - A1_xGa_{1-x}As$. Это лазер на односторонней гетероструктуре (ОГС - лазер) и лазер на двухсторонней гетероструктуре (ДГС - лазер) [7]. Так же в главе рассматриваются основные различия в ОГС и ДГС структуре, применяемых в импульсных излучателях.

В разделе 3 приводятся основные этапы технологического цикла создания лазерного излучателя.

Так же в данном разделе рассматриваются особенности конструкции полупроводниковых лазерных излучателей.

В разделе 4 Основные методы контроля параметров и характеристик полупроводниковых лазеров.

В данной главе работы рассматривается установка для измерения средней импульсной мощности лазерных кристаллов и ее компоненты, измерительная установка параметров расходимости, и ее компоненты

В главе экспериментально было выяснено, что плотность порогового тока определяется по ватт - амперной характеристике, представляющей собой зависимость мощности излучения лазера от тока накачки. Это происходит путём нахождения на ватт - амперной характеристике линейного участка и

экстраполяции этого участка прямой линией до пересечения с осью тока накачки. Точка этого пересечения и будет являться плотностью порогового тока.

Кроме того, в главе сообщается что для характеристики эффективности работы полупроводникового лазера существует такой параметр, как дифференциальная квантовая эффективность. Этот параметр включает в себя внутреннюю и внешнюю квантовые эффективности. Внутренняя квантовая эффективность показывает, какая часть из инжектированных пар носителей заряда в активную область прорекомбинировала с излучением, а внешняя квантовая эффективность определяет ту часть излучения, которая вышла из резонатора. Внешняя дифференциальная квантовая эффективность также определяется из ватт - амперной характеристики [1] и её расчётная формула имеет следующий вид:

$$\eta_d = 2 \frac{dP}{dI} \frac{I}{U} 100\% \tag{1}$$

dP

 \overline{dI} тангенс угла наклона линейного, соответствующего надпороговому режиму работы участка ватт - амперной характеристики лазера;

U - величина напряжения в вольтах, соответствующая ширине запрещённой зоны материала активной области ($U=1.4~\mathrm{B}$).

В главе рассматривалась работа Кейси и Паниша [7] из которой выводится формула для вертикальной расходимости лазерного излучения, полученная из решения волнового уравнения, имеющая следующий вид:

$$\theta_{\perp} = \frac{1,1 \times 10^{2} \times X \times d}{\lambda_{0}} \tag{2}$$

где X - содержание алюминия в эмиттерах;

d – геометрическая толщина активной области.

В этом случае предполагается, что содержание алюминия в двух триггерах и распределение его по всей длине, ширине и толщине пассивных областей должно быть одинаковым.

В разделе сообщалось, что длина волны лазерного излучения измерялась по максимуму интенсивности в спектральной характеристике лазера. Спектральная характеристика снималась с помощью монохроматора МДР- 2 и фотоизмерительного преобразователя, к которому подключён цифровой миллиамперметр. Измерения длины волны лазерного излучения могут дать информацию о содержании алюминия в активной области.

В разделе 5 производилось измерение параметров и характеристик полупроводниковых лазерных линеек, диодных блоков и излучателей.

В главе рассматривались основные требуемые параметры лазерных диодных блоков, сравнивались основные их партии.

В дальнейшем в главе приводились предварительные выводы о причинах несоответствия диодных блоков и самих структур требованиям заказчика.

ЗАКЛЮЧЕНИЕ

В данной работе были проведены экспериментальные исследования параметров и характеристик полупроводниковых лазерных структур и блоков, собранных на их основе. Проводились измерения различных партий лазерных структур, изготовленных в различных технологических режимах и имеющие различные конструктивные особенности, а также измерения параметров блоков, собранных из этих партий. Было произведено исследование 17-ти партий структур, в которые включали в себя 67 пластин. Всего было измерено 670 лазерных кристаллов и 223 блока. В результате были определены партии лазерных структур, у которых конструкция и технологический режим выращивания оказались оптимальными для создания блоков и излучателей с

необходимыми параметрами.

При выполнении работы было установлено:

- 1. Низкотемпературная технология выращивания лазерных структур более предпочтительна в сравнении с высокотемпературной т. к. лазерные кристаллы из структур, выращенных по данной технологии, имели более высокие значения дифференциальной квантовой эффективности, больший процент выхода годных, по сравнению со структурами, выращенными на жидкофазной эпитаксии.
- 2. Было обнаружено, что для некоторых партий, созданных при помощи низкотемпературной технологии причиной непригодности для создания блоков, оказалось некачественное формирование боковых граней резонатора в процессе фотолитографии, приводящее к значительной расходимости излучения в горизонтальной плоскости.
- 3. У партий лазерных структур, имеющих оптимальную конструкцию, содержание алюминия в эмиттерах составило 23 24 %, а толщина активной области порядка $0.08 \div 0.11$ микрометров.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Алферов Ж. И. История и будущее полупроводниковых гетероструктур // Физика и техника полупроводников. 1998. Т. 32, №. 1. С. 3-18.
- 2 Алферов Ж. И. Двойные гетероструктуры: концепция и применения в физике, электронике и технологии // Успехи физических наук. -2002. Т. 172. №. 9. С. 1068.
- 3 Елисеев П. Г. Полупроводниковые лазеры от гомопереходов до квантовых точек // Квантовая электроника. 2002. Т. 32. №. 12. С. 1085-1098.
- 4 Arakawa Y., Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current // Applied Physics Letters. − 1982. − T. 40, №. 11. − C. 939-941.

5 Голикова Е. Г. и др. Свойства InGaAsP/InP-гетеролазеров со ступенчатым расширенным волноводом // Письма в ЖТФ. -2000. - Т. 26. - № 20.

6 Евтихиев В. П. и др. Непрерывная генерация при 293 К РО ДГС лазеров с одним слоем InAs квантовых точек в активной области, выращенных на вицинальных поверхностях GaAs (001), разориентированных в направлении [010] // Физика и техника полупроводников. — 1998. — Т. 32, №. 12. — С. 1482-1486.

7 Кейси X., Паниш М. Лазеры на гетероструктурах / Пер. с англ. под ред. д.ф.-м.н. П.Г. Елисеева. – 1986. – С. 84.