Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра математического анализа

Обобщенный метод интервалов АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студентки 3 курса 322 группы

направление 44.04.01 – Педагогическое образование

Механико-математического факультета

Белицкой Евгении Станиславовны

Научный руководитель	
доцент, к.ф м. н., доцент	 М.А.Осипцев
Зав.кафедрой	
д.фм.н., профессор	 Д.В.Прохоров

введение.

Выпускная квалификационная работа магистра представляет собой разработку электронного образовательного курса «Обобщенный метод интервалов».

Данный образовательный курс предназначен для учащихся 9-11 классов основного общего образования, и содержит элементы относящиеся как к обучению на базовом уровне, так и в классах с профильной подготовкой.

Электронный образовательный курс «Обобщенный метод интервалов» - это электронный ресурс, который содержит полный комплекс учебно-методических материалов, необходимых для освоения данной темы согласно учебному плану в рамках образовательной программы.

Курс обеспечивает все виды работ в соответствии с программой дисциплины, включая практикум, средства для контроля усвоения качества материала.

Основные цели создания электронно - образовательного курса:

- Повышение качества обучения при реализации образовательных программ с применением электронного обучения и дистанционных образовательных технологий.
- Оптимизация деятельности педагогического состава, работающего с применением электронного обучения и дистанционных образовательных технологий.
- Создание электронной информационно-образовательной среды, позволяющей осуществлять индивидуальный подход в образовательном процессе.

Задачи создания электронного образовательного курса:

• Соответствие единым требованиям к структуре, отдельным элементам ЭОК и технологиям обучения в системе дистанционного образования Ipsilon

- Обеспечение образовательного процесса учебно-методическими и контрольно-измерительными материалами по теме «Обобщенный метод интервалов», реализуемой в системе дистанционного образования Ipsilon
- Постоянное совершенствование и обновление комплекса учебнометодических материалов по данной теме.

Актуальность выбранной темы заключается в следующем: независимо от того, по каким программам и с использованием каких учебников преподается школьный курс математики, неравенства всегда останутся важным и нужным разделом в обучении. В соответствии с этим, целесообразно поставить вопрос о возможности существования универсального способа их решения, независимо от вида неравенства.

Исходя из вышесказанного, можно сформулировать цель дипломной работы:

На методологической основе провести обобщение метода интервалов применительно к решению неравенств в школьном курсе математики средней и старшей школы и обосновать его универсальность.

В данной работе будет разработана и апробирована программа раздела «Обобщенный метод интервалов». В нее входят основы обобщенного метода интервалов и решения неравенств.

При осуществлении усиленной математической подготовки: в классах с углубленным изучением, на факультативах, спецкурсах, на подготовительных курсах, как правило, предпринимаются попытки количественного обогащения, прежде всего, заданного материала: задействуется большее число задач, сами задачи становятся более разнообразными по сравнению с теми, которые содержатся в учебниках для общеобразовательных школ. Но при этом используются интуитивные представления об уравнениях и неравенствах методом интервалов, а

вместо выявления сущности таких задач, общих способов их решения каждое новое неравенство рассматривается фактически вне связи с предыдущими, что в конечном счете вызывает затруднения у школьников. Цель считается достигнутой, если ученик на уровнях:

базовом средн	нем	повышенном
о методе исполнитервалов; в раб б) находит нули функции; мето, в) решает рациональные соста	1 , ,	а) самостоятельно использует полученные знания; б)владеет обобщенным методом интервалов; в)разбирается и самостоятельно решает все виды неравенств.

Цель 2: контроль усвоения теоретических знаний при работе: а) с основными определениями; б) с методами решения систем уравнений; в) с типами и классами предлагаемых задач.

Цель считается достигнутой, если ученик на уровнях:

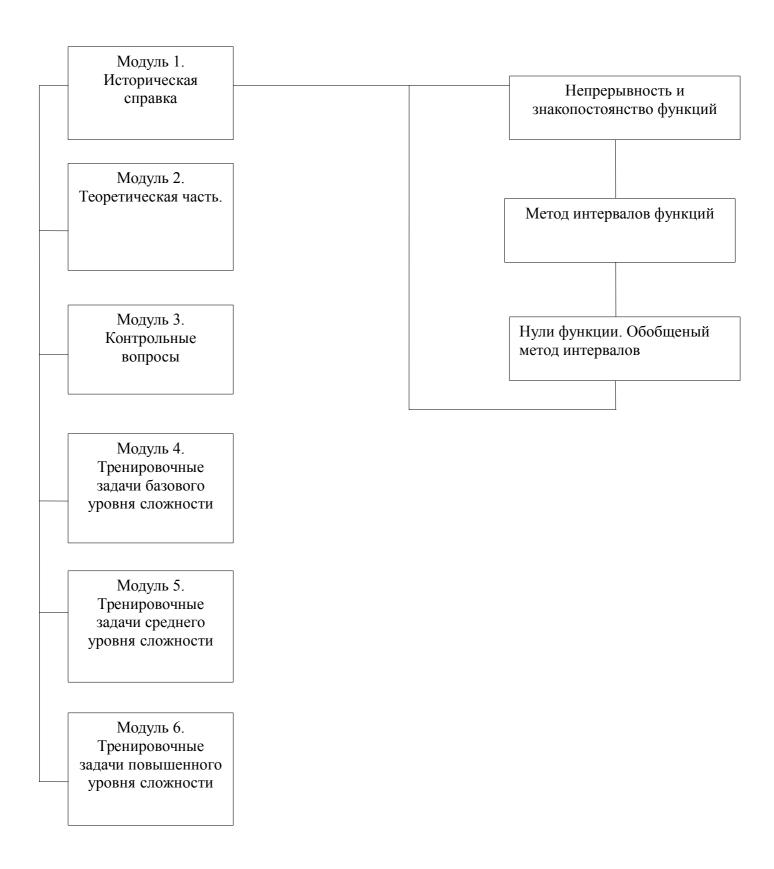
базовом	среднем	повышенном
а) воспроизводит схему	а) формулирует	а) Работает с
определения понятий и	определение метода	предоставленными задачами
формулирует определения	интервалов, приводит	конкретного уровня,
неравенств; приводит примеры;	контрпримеры;	формулирует определение
перечисляет методы решения;	разбирается в методах	обобщённого метода
вставляет пропущенные в	решения; б) решает	интервалов б) решает задачи
определении слова; раскрывает	задачи среднего уровня	повышенного уровня
термин понятия; б) решает	сложности.	сложности.
задачи базового уровня		
сложности.		

Цель 3: формирование коммуникативных умений через включение в групповую работу; взаимопомощь, рецензирование ответов, организацию взаимоконтроля и взаимопроверки на всех уровнях.

Цель считается достигнутой, если ученик:

а) работая в группе, ведет активную работу, оказывает помощь, анализирует ответы товарищей по выполненным заданиям предыдущих уровней с обоснованием, организует взаимоконтроль; б) оказывает помощь

работающим на предыдущих уровнях; в) составляет контрольную работу в соответствии со своим уровнем освоения темы.


Цель 4: формирование организационных умений (целеполагание, планирование, реализация плана, саморегуляция универсальных познавательных действий).

Цель считается достигнутой, если ученик:

формулирует цели своей учебной деятельности; б) выбирает задачи и решает их; в) осуществляет самопроверку; г) составляет контрольную работу для своего уровня усвоения; д) оценивает свою итоговую деятельность по данным объективным критериям; по собственным критериям, сравнивая их с объективными критериями; е) делает выводы о дальнейших действиях, планирует коррекцию учебной познавательной деятельности.

Успешное освоение данного электронного образовательного курса окажет помощь при сдаче Основного государственного экзамена (ОГЭ) и Единого государственного экзамена (ЕГЭ).

Структура электронного образовательного курса

Предлагается следующий порядок изучения данного электронного курса. Сначала необходимо ознакомиться с модулем «Историческая справка». Данный модуль носит ознакомительный характер, поэтому можно сразу приступить к изучению модуля «Теоретическая часть». Этот модуль достаточно объемный, поэтому на его изучение отводится несколько дней. Учащиеся должны будут ознакомиться с основными определениями, освоить метод интервалов для решения неравенств, далее ученик переходит на изучение более сложного методического материала, знакомится с обобщённым методом интервалов.

Далее учащимся после модуля "Теоретическая часть" предлагаются контрольные вопросы. Правильный ответ на каждый вопрос оценивается в полбалла. Вопросов всего 15, поэтому об успешном прохождении модуля можно будет говорить, набрав от 5 до 7,5 баллов (10-15 вопроса).

После изучения данных разделов можно браться за решение задач базового уровня сложности — это модуль 4. Каждая задача данного уровня будет оцениваться в 1 балл. Модуль считается успешно пройденным, если учащийся набрал от 5 до 7 баллов. Такое количество баллов можно приравнять к оценке «5». Если учащийся набрал от 4 до 5 баллов, это говорит о менее успешном освоении модуля и приравнивается к оценке «4», от 2 до 4 баллов — это оценка «3». Наконец, если набрано менее 2 баллов, значит, есть необходимость снова вернуться к изучению теоретической части.

После того как ученик освоил базовый уровень сложности, он переходит к модулю 5 "Тренировочные задачи среднего уровня сложности". Там также предлагаются 6 заданий, каждое из которых оценивается в 2 балла. Общее количество баллов, которое можно набрать на данном этапе составляет 12 баллов. Модуль считается успешно пройденным, если учащийся набирает от 8-12 баллов. Минимальное количество баллов которое

может получить учащимся по прохождению данного теста составляет 4 балла (2 задания)

Соответственно, 4 – 6 баллов – это оценка «3», 6 – 8 баллов – это оценка «4», 8-12 баллов – это оценка «5». Перевод в оценку необходим для самоконтроля, поэтому, если учащийся набрал менее 4 баллов, он получает оценку «2» и ему необходимо снова обратиться к теоретическому материалу.

После изучения и освоения материала, предлагается приступить к модулю 6 «Тренировочные задачи повышенного уровня сложности». Таких заданий так же предлагается 6 и правильное решение каждой оценивается в 3 балла. Максимальное количество баллов, которое возможно набрать, составляет- 18 балл (7 заданий). Если учащийся набирает менее 9 баллов, говорит о том. что ему необходимо вернуться в модуль 2"Теоретический материал".

На освоение данного электронного образовательного курса в среднем можно затратить неделю. Но это касается учащихся 11-х классов, освоивших темы, необходимые для решения некоторых задач среднего и повышенного уровней сложности. Необходимо учитывать уровень знаний учащихся, и в каком классе предлагается прохождение данного курса.

Основное содержание работы.

1. Непрерывность и знакопостоянство функций.

Понятие функции — одно из важнейших понятий математики. Пусть даны два множества X и Y и каждому элементу $x \in X$ поставлен в соответствие единственный элемент $y \in Y$, который обозначен через f(x). В этом случае говорят, что на множестве X задана функция f и пишут:

 $f: X \to Y$. Иногда сама функция f обозначается символом f(x).

Множество X называется областью определения D(f)=X, а множество Y называется областью значений функции. При этом x называется независимой переменной, а y зависимой переменной или функцией.

2. Метод интервалов для рациональных функций.

Метод интервалов (или как его еще иногда называют метод промежутков) — это универсальный метод решения неравенств. Он подходит для решения разнообразных неравенств, однако наиболее удобен в решении рациональных неравенств с одной переменной. Поэтому в школьном курсе алгебры метод интервалов вплотную привязывают именно к рациональным неравенствам.

Что касается нелинейных рациональных неравенств с одной переменной, то они с помощью особых преобразований и приведенных ниже двух теоремах, сводятся к линейным неравенствам.

Теорема 1. Если в системе неравенств одно из них удовлетворяется при всех значениях переменной (такое неравенство иногда называют тождественно - истинным), то отбросив его, получим систему, равносильную исходной.

Следствие. Если в неравенстве $f(x)\varphi(x)\vee 0$ множитель f(x) такой, что $x\in R$, то этот множитель можно отбросить, т.е. исходное

$$\varphi(x) \vee 0$$

неравенство равносильно неравенству

$$\frac{f(x)}{\varphi(x)} > 0 \qquad \frac{f(x)}{\varphi(x)} < 0$$

Теорема 2. Неравенство

ли равносильно

$$f(x)\varphi(x) > 0 \qquad f(x)\varphi(x) < 0$$
 соответственно неравенству или

Заметим, что если неравенство нестрогое, то эта теорема верна лишь

$$\frac{3x-2}{x+3} \ge 0$$

при некоторых дополнительных условиях. Например, неравенство

$$(3x-2)(x+3) \ge 0 \\ \text{при условии, что} \\ x \ne -3.$$

3. Нули функции. Обобщенный метод интервалов.

 $x \in D(y)$ при f(y) = 0 называются **нулями функции**. Нули функции — это точки пересечения графика функции с осью Ox.

Описанный выше метод интервалов с небольшими изменениями и дополнениями может быть использован для решения не только рациональных, но и произвольных неравенств видов

$$\frac{f(x)}{g(x)} \vee 0,$$

$$f(x) \cdot g(x) \cdot ... \vee 0$$

где f(x), g(x) — непрерывные функции, а символ \vee есть одно из неравенств: $\stackrel{\leq}{}, \stackrel{\geq}{}, >$. Применительно к таким неравенствам этот метод, называемый еще обобщенным методом интервалов, включает в себя следующие операции.

Нахождение области определения левой части неравенства (кратко ОДЗ),

кроме, быть может, без учета корней знаменателя.

- 1. Нахождение корней числителя, и, быть может, знаменателя.
- 2. Нанесение найденных корней на числовую ось, причем только в пределах ОДЗ.
- 3. Определение знаков левой части неравенства на полученных промежутках.
- 4. Выяснение принадлежности концов полученных промежутков (особых точек) множеству решений неравенства.
- 5. Выбор промежутков, соответствующих знаку неравенства, и запись ответа.

ЗАКЛЮЧЕНИЕ.

Данная работа содержит методические и теоретические обоснования универсальности метода интервалов, который применяется в основной и старшей школе, в результате чего реализованы следующие задачи:

- изучен и проанализирован теоретический материал по данной теме,
 новизна и значимость данного материала для подготовки к текущему
 контролю и экзаменам;
- определены методические особенности данной темы, методику её преподавания каждый учитель подбирает для себя самостоятельно, учитывая способности учащихся;
- разработана система задач, дифференцированная по уровню сложности;

Таким образом, практическое значение данной темы заключается в том, что этот электронный образовательный курс могут использовать учащиеся средних общеобразовательных школ, студенты средних специальных учебных заведений, студенты педагогических вузов и преподаватели.

Поставленная цель достигнута, а именно: проведено обобщение метода интервалов для решения неравенств.