МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра компьютерной алгебры и теории чисел		
Базис Ван дер Пута		
АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ		
студента <u>4</u> курса <u>421</u> группы		
направления 02.03.01 Математика и компьютерные науки		
механико-математического факультета		
Велиевой Айкун Гасан-Кызы		
Научный руководитель		
зав. каф., к. фм. н., доцент		А.М.Водолазов
	подпись, дата	
Зав. кафедрой		
зав. каф., к. фм. н., доцент	подпись, дата	А.М.Водолазов

Введение. Изучение динамических систем на р-адических сферах было важно для развития р - адической теории динамических систем. С точки зрения приложений, потребность изучения р-адических динамических систем возникает при решении задачи генерации псевдослучайных чисел: р-адические динамические системы дают широкий класс превосходных генераторов псевдослучайных чисел, которые играют столь важную роль в криптографии, а также в других прикладных областях, таких как численный анализ и компьютерное моделирование.

Теория динамических систем в полях р-адических чисел является важной частью алгебраической и арифметической динамики. Их изучение мотивировано применениями в различных областях математики, физики, генетики, биологии, когнитивной науки, нейрофизиологии, информатики и т.д.

В первом разделе данной работы рассмотрим основные аспекты p-адического анализа. Во втором разделе изучим базисы Ван дер Пута и найдем первообразную функцию. И третий раздел посвятим критерию сохранения меры для p-адических динамических систем в терминах базиса Ван дер Пута.

Основным математическим инструментом, используемым в этой работе, будет представление функции рядом Ван дер Пута, который активно используется в р-адическом анализе. Основным моментом в построении базиса Ван дер Пута будет непрерывность характеристической функции р-адического шара.

Основное содержание работы. Рассмотрим некоторые понятия. При $x=\sum_{j=-\infty}^{\infty}a_{j}p^{j}\in\mathbb{Q}_{p}$ определим его p-адическую целую часть $[x]_{p}$ по

$$[x]_p := \sum_{j=-\infty}^{\infty} a_j p^j$$

И полагаем, что

$$x_n := p^n [p^{-n}x]_p \sum_{j=-\infty}^{\infty} a_j p^j, (n \in 0, 1, ...)$$

Таким образом, присвоили каждому $x \in \mathbb{Q}_p$ стандартную последовательность $x_0, x_1, ...,$ сходящийся к x. Элемент $x \in \mathbb{Z}_p$ стандартной последовательности состоит из неотрицательных целых чисел; в конечном счете, это постоянная величина, если $x \in 0, 1, \dots$ Обозначим $m \triangleleft x, m \in \mathbb{N} \cup 0, x \in \mathbb{Z}_p$ если m один из номеров x_0, x_1, \dots Иногда \triangleleft будем называть соотношением между m и x. 'x начинается с m' или 'm является начальной частью x'.

Если $n \in \mathbb{N}$, то $m : m \triangleleft n, m \neq n$ финитный (ограничен, конечен) и имеет наибольший элемент (относительно ⊲).

Далее, приведем некоторые элементарные факты, относительно этих понятий.

Предложение 5.

- 1. Пусть $x \in \mathbb{Z}_p, n \in \{0, 1, 2, ...\}$. Тогда $|x x_n|_p \le p^{-n}$ и $x_n \in \{0, 1, ..., p^n 1\}$. Обратно, $y \in 0, 1, ..., p^n - 1, |x - y|_p \le p^{-n}$, следовательно $y = x_n$
 - 2. Пусть $x, y \in \mathbb{Z}_p, n \in \{0, 1, 2,\}$ Тогда

 $|x-y|_p \leq p^{-n}$ тогда и только тогда, когда $x_n = y_n$

 $|x-y|_p = p^{-n}$ тогда и только тогда, когда $x_n = y_n$ и $x_{n+1} \neq y_{n+1}$.

- 3. $x \mapsto x_n (x \in \mathbb{Z}_p)$ имеет постоянное значение смежных классов $p^n \mathbb{Z}_p (n \in \mathbb{Z}_p)$ $0, 1, \dots$).
 - 4. Пусть $x, y \in \mathbb{Z}_p, n \in \{0, 1, 2, ...\}$. Тогда

$$|x - x_n|_p = \begin{cases} 0, & \text{если } |x - y|_p \le p^{-n}; \\ |x - y|_p, & \text{если } |x - y|_p > p^{-n}. \end{cases}$$

- 5. $(x_n)_m = x_{\min(n,m)} (x \in \mathbb{Z}_p, n, m \in \{0, 1, 2, ...\}).$
- 6. Пусть $x \in \mathbb{Z}_p, m \in \mathbb{N}$. Тогда

 $m \triangleleft x$ тогда и только тогда, когда $|x-m|_p < \frac{1}{m}$ 7. $|m-m_-|=p^{-s(m)}, (m\in\mathbb{N}),$ где $s(m):=[\frac{\log m}{\log p}]$ также определяется $m = a_0 + a_1 p + \dots + a_{s(m)} p^{s(m)}, a_{s(m)} \neq 0.$

Теорема 4. Функции $e_0, e_1, ...$ определяемые следующим образом

$$e_n := egin{cases} 1, & \text{если } n \lhd x \\ 0, & \text{если в противном случае,} \end{cases}$$

где $x \in \mathbb{Z}_p, n \in (\{0,1,,2,...\}),$ образуют ортонормированный базис (базис Ван дер Пута) $C(\mathbb{Z}_p \to K)$ раскладывается в ряд

$$f(x) = \sum_{n=0}^{\infty} a_n e_n(x), x \in \mathbb{Z}_p,$$

то $a_0 = f(0)$ и $a_n = f(n) - f(n_)$ при $n \in \mathbb{N}$.

Теорема 5. (Характеристика липшицевых функций коэффициентов Ван дер Пута). Пусть $f = \sum_{n=0}^{\infty} a_n e_n \in C(\mathbb{Z}_p \to K)$. Тогда, $f \in Lip_1(\mathbb{Z}_p \to K)$ тогда и только тогда, когда $\sup_n |a|_n n < \infty$. Более точно, для $f = \sum_{n=0}^{\infty} a_n e_n \in C(\mathbb{Z}_p \to K)$ имеем следующее:

- $(1) \| \Phi_1 f \|_{\infty} = \sup\{ |a_n| |\gamma_n|_p^{-1} : n \in \mathbb{N} \}$
- (2) $\| \Phi_1 f \|_{\infty} \le \sup\{ |a_n| n : n \in \mathbb{N} \} \le p \| \Phi_1 f \|_{\infty}$
- (3) Если $f \in Lip_1(\mathbb{Z}_p \to K)$, то $||f||_1 = \sup\{|a_n|| \gamma_n|_p^{-1}: n \in \{0, 1, 2, ...\}\}$. **Теорема 6.** (Характеристика C^1 -функций с нулевой производной). Пусть $f = \sum_{n=0}^{\infty} a_n e_n \in C(\mathbb{Z}_p \to K)$. Тогда

$$f \in N^1(\mathbb{Z}_p \to K) \Leftrightarrow \lim_{n \to \infty} |a_n| n = 0 \Leftrightarrow \lim_{n \to \infty} a_n(n - n_{\perp})^{-1} = 0.$$

Для $f \in C(\mathbb{Z}_p \to K)$, непрерывная функция $g : \mathbb{Z}_p \to K$ однозначно определена, для которого g(0) = 0 и $\Phi_1 g(n, n_-) = f(n_-)$ для всех $n \in N$. Действительно, условия на g задаются его коэффициентами Ван дер Пута, поэтому g обязательно имеет вид $g = \sum_{n=1}^{\infty} f(n_-)(n-n_-)_{e_n}$. И наоборот, последняя формула определяет непрерывную функцию g (так как $\lim_{n\to\infty} f(n_-)(n-n_-) = 0$) и $g(n) - g(n_-) = f(n_-)(n-n_-)$ для всех $n \in \mathbb{N}, g(0) = 0$. Таким образом,имеет место следующее определение \mathbb{L} . Определение 7. Функцию $f \in C(\mathbb{Z}_p \to K)$ обозначим через Pf, единственную непрерывную функцию, удовлетворяющим условиям Pf(0) = 0 и $Pf(n) - Pf(n_-) = (n-n_-)f(n_-)$ для любых $n \in \mathbb{N}$

 $^{^1{\}rm Schikhof~W.H.},$ Ultrametric calculus. An introduction to p-adic analysis, Cambridge: Cambridge University Press, 1984. 196 c

Теорема 7. (Свойства Р). Р является линейной изометрией $C(\mathbb{Z}_p \to K)$ в $C^1(\mathbb{Z}_p \to K)$. Для каждого $f \in C(\mathbb{Z}_p \to K)$, Pf является первообразной f вместе со следующим свойством среднего значения.

$$\frac{Pf(x) - Pf(y)}{x - y} \le \max\{ | f(z) | : z \in [x, y] \} \ (x, y \in \mathbb{Z}_p, x \ne y)$$

(где [x,y] означает наименьший круг, содержащий x и y.)

Теорема 8. (Формула для Pf). Пусть x_n в предложении 1. Тогда имеем для $f \in C(\mathbb{Z}_p \to K)$

$$Pf(x) = \sum_{n=0}^{\infty} f(x_n)(x_{n+1} - x_n) \ (x \in \mathbb{Z}_p).$$

Более конкретно, если $x = \sum_{n=0}^{\infty} b_n p^n \in \mathbb{Z}_p$, то

$$Pf(x) = f(0)b_0 + \sum_{n=1}^{\infty} f\left(\sum_{j=0}^{n-1} b_j p^j\right) b_n p^n.$$

Если $f = \sum_{n=0}^{\infty} a_n e^n$, то

$$Pf(x) = \sum_{n=0}^{\infty} a_n(x-n)e_n(x) \ (x \in \mathbb{Z}_p).$$

В итоге, имеем

$$Pf(x) = \sum_{n=0}^{\infty} f(n_{-})(n - n_{-})e_{n}.$$

Теорема 9. Пусть $A \in C(\mathbb{Z}_p \to K) \to C(\mathbb{Z}_p \to K)$ удовлетворяет условию Липшица $\|Af - Ag\|_{\infty} \le \|f - g\|_{\infty}, (f, g \in C(\mathbb{Z}_p \to K))$. Тогда существует изометрическое отображение (относительно $\|\|_{\infty}$) в $N^1(\mathbb{Z}_p \to K)$ на множестве решений дифференциального уравнения $f' = Af, (f \in C^1(\mathbb{Z}_p \to K))$.

Из теории p-адических дифференциальных уравнений с аналитическими решениями выделим одну конкретную проблему для которых C^1 -теория может помочь. Пусть $\lambda \in \mathbb{Z}_p$. Рассмотрим дифференциальное уравнение

$$xf'(x) - \lambda f(x) = (1 - x)^{-1} \ (x \in D). \tag{1}$$

Определение 8. Для каждого $\lambda \in \mathbb{Z}_p$ положим $\nu(\lambda) := \lim_{n \to \infty} \sqrt[n]{|n-\lambda|_p}$.

 λ является p-адическим числом Лиувилля, если $\nu(\lambda)=0.$

Теорема 10. Пусть $g: \mathbb{Z}_p \to K$ непрерывная функция, значит дифференцируема в точке 0 и пусть $\lambda \in \mathbb{Z}_p$. Если $\lambda = 0$, то предположим, что g(0) = 0 и g'(0) = 0. Тогда существует C^1 —функция $f: \mathbb{Z}_p \to K$ такой, что $xf'(x) - \lambda f(x) = g(x)$ для всех $x \in \mathbb{Z}_p$

Произошло знакомство с p-адическими числами Лиувилля, то есть числа $\lambda \in \mathbb{Z}_p$ для которых $\lim_{n\to\infty} \sqrt[n]{\mid n-\lambda\mid_p} = 0$. Свойства этих чисел покажет поразительную аналогию с вещественными числами Лиувилля.

Разрыв в p-адическом разложении $x = \sum_{j=0}^{\infty} a_j p^j$ элемента $x \in \mathbb{Z}_p$ является пара чисел s < t, такой что $a_s \neq 0, a_{s+1} = a_{s+2} = \dots = a_{t-1} = 0, a_t \neq 0$. Длина такого разрыва является число $[t/p^s]$. Условие (β) из следующей теоремы делает его более видимым. P-адические целые числа являются числами Лиувилля, а также дают метод для их создания.

Теорема 11. Пусть $\lambda \in \mathbb{Z}_p$. Следующие условия эквивалентны.

- (α) . λ является числом Лиувилля.
- (β) . У разрыва λ есть произвольные промежутки.

Теорема 12. p-адическое число Лиувилля не является алгебраическим относительно \mathbb{Q} .

Теорема 13. *p*-адические числа Лиувилля образуют компактное G_{δ} —подмножество \mathbb{Z}_p .

Теорема 14. p-адические числа Лиувилля образуют нулевое множество в \mathbb{Z}_p . **Теорема 15.** Пусть $\gamma_0, \gamma_1, ...p$ -адические целые числа, определяемые как: $\gamma_0 := 1, \gamma_n := n - n_-(\forall n \in \mathbb{N})$. Пусть P-первообразная функция, удовлетворяющая условиям Pf(0) = 0 и $Pf(n) - Pf(n_-) = (n - n_-)f(n_-)$ для любых $n \in \mathbb{N}$. Тогда функции $\gamma_0 e_0, \gamma_1 e_1, ..., Pe_0, Pe_1, ...$ образуют ортонормированный базис $C^1(\mathbb{Z}_p \to K)$; $\gamma_0 e_0, \gamma_1 e_1, ...$ являются ортонормированным базисом $N^1(\mathbb{Z}_p \to K)$.

Следствие 2. Коэффициенты относительно $e_0, e_1, ..., Pe_0, Pe_1, ...$

Пусть $f \in C^1(\mathbb{Z}_p \to K)$, имеет разложение

$$f = \sum_{n=0}^{\infty} a_n e_n + \sum_{n=0}^{\infty} b_n P e_n$$

Тогда

$$a_n = \begin{cases} f(0), & \text{если } n = 0 \\ f(n) - f(n_{-}) - (n - n_{-})f'(n), & \text{если } n \in N \end{cases}$$
 $b_n = \begin{cases} f'(0), & \text{если } n = 0 \\ f'(n) - f'(n_{-}), & \text{если } n \in N. \end{cases}$

Следствие 3. Локально постоянные функции образуют компактное подмножество $N^1(\mathbb{Z}_p \to K)$. Локально линейные функции образуют компактное подмножество $C^1(\mathbb{Z}_p \to K)$.

Теория динамических систем в полях p-адических чисел и их алгебранические расширения являются важной частью алгебранческой и арифметической динамики. Как и в общей теории динамических систем, вопросы эргодичности и сохранения меры играют фундаментальные роли в теории p-адических динамических систем. Обычно исследования в этих областях p-адической динамики ограничивались аналитическими или, по крайней мери, гладкими отображениями $f: \mathbb{Q}_p \to \mathbb{Q}_p$, где \mathbb{Q}_p - поле p-адических чисел. Однако, внутренняя математическая разработка теории p-адических динамических систем, а также приложений к криптографии стимулировали интерес к негладким динамическим картам. Важный класс негладких отображений дается липшицевыми функциями. В криптографических приложениях такие функции называются совместимыми.

Пусть p > 1-произвольное простое число. Кольцо целых p-адических чисел обозначается символом \mathbb{Z}_p . p-адическое нормирование обозначается $| \ |_p$. Эта оценка удовлетворяет сильному неравенству треугольника:

$$|x+y|_{p} \le [|x|_{p}, |y|_{p}].$$

Это основное отличительное свойство p-адической оценки, вызывающее существенное отклонение от реального или комплексного анализа.

Ряды Ван дер Пута определяется следующим образом. Пусть $f: \mathbb{Z}_p \to \mathbb{Z}_p$ непрерывная функция. Тогда существует единственная последовательность p-адических коэффициентов $B_0, B_1, ...,$ такая, что

$$f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x)$$

Для всех $x \in \mathbb{Z}_p$. Здесь характеристическая функция $\chi(m,x)$ задается формулой

$$\chi(m,x) = \begin{cases} 1, & \text{если } |x-m|_p \le p^{-n}, \\ 0, & \text{в противном случае,} \end{cases}$$

где n=1, если m=0, и n однозначно определяется неравенством $p^{n-1} \leq m \leq p^n-1$ в противном случае.

Коэффициенты Ван дер Пута B_m связаны со значениями f следующим образом. Пусть $m=m_0+...+m_{n-2}p^{n-2}+m_{n-1}p^{n-1}$ представление m в p-арной системе счисления, т.е. $m_j\in\{0,...,p-1\}, j=0,...,n-1$ и $m_{n-1}\neq 0$. Тогда

$$B_m = \begin{cases} f(m) - f(m - m_{n-1}p^{n-1}), & \text{если } m \ge p, \\ f(m), & \text{в противном случае,} \end{cases}$$

Пусть $f: \mathbb{Z}_p \to \mathbb{Z}_p$ -функция и f удовлетворяет условию Липшица с константой 1 (относительно p-адического нормирования $| \ |_p$):

$$| f(x) - f(y) |_p \le |x - y|_p \quad (\forall x, y \in \mathbb{Z}_p).$$

Снова утверждаем, что отображение алгебраической системы A на себя называется совместимым, если оно сохраняет все конгруэнции A. Легко проверить, что отображение $f: \mathbb{Z}_p \to \mathbb{Z}_p$ является липшицевым тогда и только тогда, когда оно согласовано, относительно $\mod p^k, k=1,2,\ldots$ конгруэнции.

Пространство \mathbb{Z}_p оснащено естественной вероятностной мерой, а именно мерой Хаара μ_p , нормированной так, что $\mu_p(\mathbb{Z}_p) = 1$. Отображение $f: \mathbb{S} \to \mathbb{S}$

измеримого пространства $\mathbb S$ с вероятностной мерой μ называется сохраняющим меру, если $\mu(f^{-1}(S)) = \mu(S)$ для любого измеримого подмножества $S \subset \mathbb S$.

Скажем, что совместимая функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ является биективным модулем p^k , если индуцированное отображение $x \mapsto f(x) \mod p^k$ является перестановкой на $\mathbb{Z}/p^k\mathbb{Z}$. Совместимая функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ сохраняет меру тогда и только тогда, когда она биективна по модулю p^k для всех k = 1, 2, ... Теорема 16. Пусть $f: \mathbb{Z}_p \to \mathbb{Z}_p$ совместимая функция и

$$f(x) = \sum_{m=0}^{\infty} p^{\log_p m} b_m \chi(m, x)$$

представление Ван дер Пута этой функции, где $b_m \in \mathbb{Z}_p, m=0,1,2,...$ Тогда f(x) сохраняет меру Хаара тогда и только тогда, когда

- 1) $b_0, b_1, ..., b_{p-1}$ устанавливает полный набор модулей вычетов p, т.е. функция f(x) биективна по модулю p;
- 2) $b_{m+p^k},...,b_{m+(p-1)p^k}$ для любого $m=0,...,p^k-1$ все ненулевые вычеты по модулю p при k=2,3,....

Следствие 4. Пусть $f: \mathbb{Z}_p \to \mathbb{Z}_p$ -локально совместимая функция и

$$f(x) = \sum_{m=0}^{\infty} p^{[\log_p m]} b_m \chi(m, x)$$

представление Ван дер Пута этой функции, где $b_m \in \mathbb{Z}_p, m \geq N$. Тогда f(x) сохраняет меру Хаара тогда и только тогда, когда

- 1. Функция f(x) биективна по модулю p^N ;
- $2.\ b_{m+p^k},...,b_{m+(p-1)p^k}$ для любого $m=0,...,p^k-1$ все ненулевые вычеты по модулю p при k>N.

Заключение. В представленной работе были рассмотрены некоторые аспекты *р*-адического анализа, базис Ван дер Пута, критерий сохранения меры для *р*-адических динамических систем в терминах базиса Ван дер Пута. Даны их определения, условия выполнения, а также доказаны некоторые теоремы. Основным математическим инструментом, используемым в этой работе, было представление функции рядом Ван дер Пута, который активно используется

в р-адическом анализе. И основным моментом в построении базиса Ван дер Пута была непрерывность характеристической функции р-адического шара. Данная тема является достаточно актуальной, так как с точки зрения приложений, потребность изучения р-адических динамических систем возникает при решении задачи генерации псевдослучайных чисел: р-адические динамические системы дают широкий класс превосходных генераторов псевдослучайных чисел, которые играют столь важную роль в криптографии, а также в других прикладных областях, таких как численный анализ и компьютерное моделирование.