МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт химии

Кафедра органической и биоорганической химии

наименование кафедры

Многокомпонентный синтез аннелированных (циклами C₅, C₆) пиридинов в PEG-400

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента (ки) <u>4</u> курса <u>412</u> группы							
направления <u>04.03.01 «Химия»</u>							
код и наименование направления							
Тикеевой Евгении Ситкалиевны							
Н.В. Пчелинцева							
инициалы, фамилия							
О.В. Федотова							
инициалы, фамилия							

Введение

Пиридиновое гетероциклическое ядро является широко распространенной субъединицей в многочисленных природных продуктах [1] и универсальным лигандом в координационных и надмолекулярных структурах [2,3]. Как отмечено в статье Э. Лукевица, посвященной 150-летию химии пиридина [4], в конце прошлого столетия из 1500 наиболее регулярно применяемых медицинских препаратов свыше 10% приходится на долю соединений, имеющих пиридиновое или пиперидиновое кольцо.

Таким образом, поиск новых методов получения функционально замещенных пиридиновых соединений имеет большое значение как с точки зрения фундаментального развития химии гетероциклов, так и с точки зрения практической значимости подобных исследований. Особыми требованиями к реакциям, лежащим в основе таких методологий, являются их хемо-, регио- и стереоселективность, возможность получения целевых соединений в одну препаративную стадию (однореакторность), атомная экономия и экологичность.

Синтез полизамещенных пиридинов (или пиридинов Крёнке) является предметом интенсивных исследований в течение последних десятилетий. Среди используется наиболее циклизация [3+2+1]-типа подходов часто ненасыщенных соединений с а-замещенными кетонами и источником азота [5-7]. Эффективность таких замыканий пиридинового кольца зависит от природы α-замещенной группы в кетоновом фрагменте, которая действует как уходящая группа в процессе ароматизации. Еще одним из методов, используемых для конструирования этого гетероцикла, является двухстадийный синтез Крёнке [8-10] посредством конденсации α,β-ненасыщенных кетонов с солями пиридиния в присутствии смеси ацетата аммония и уксусной кислоты или другого растворителя с образованием широкого круга полизамещенных пиридинов и имеет явные преимущества перед другими подходами.

Из-за ароматического характера пиридинового гетероцикла, его основности и электроно-акцепторного влияния атома азота, катионы пиридиния

могут вести себя как нуклеофилы и 1,3-диполи и демонстрируют большое разнообразие синтетических применений, таких как реакция с алкенами, замещенными электроноакцепторными группами. Катионы пиридиния с более сильными электроноакцепторными карбонильными, циано- и нитрогруппами увеличивают активность метиленовой группы и имеют более разносторонние применения. Известно, что бромид N-фенацилпиридиния в присутствии основания претерпевает, например, конденсацию Кневенагеля с альдегидами, присоединение по Михаэлю к а,β-ненасыщенным карбонильным соединениям и диполярное циклоприсоединение к активированным алкенам. Следовательно, стоит исследовать новые типы реакций и синтетическое применение соли N-фенацилпиридиния с акцентом на многокомпонентные реакции, которые предлагают значительные преимущества и становятся все более важными в органической и медицинской химии.

Целью данной работы является синтез аннелированных циклами C_5 - C_6 пиридинов в модифицированных условиях реакции Крёнке.

При этом решались следующие задачи:

- обзор литературных данных по синтезу пиридинов и их конденсированных аналогов;
- изучение поведения в условиях многокомпонентной реакции Крёнке Nфенацилпиридиний йодида, ароматического альдегида, циклокетона и ацетата аммония;
- установление строения синтезированных соединений спектроскопией ЯМР 1 Н и 13 С.

Объем и структура работы:

Выпускная квалификационная работа состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части, выводов и списка используемых источников. Работа изложена на 42 страницах, содержит 4 таблицы и 0 иллюстраций.

Основное содержание работы:

Первая глава ВКР посвящена литературному обзору, в котором описываются различные методы синтеза полизамещенных пиридинов – синтез по Ганчу, циклизация [3+3]-типа халконов и иминофосфоранов, циклизация [4+2] ненасыщенных иминов с енолятами металлов, циклизация [3+2+1]-типа α,β-ненасыщенных соединений с α-замещенными кетонами и источником азота, также рассматриваются синтез конденсированных пиридинов с различным приконденсированным кольцом и практическая значимость конденсированных пиридинов.

За основу в проведении синтеза аннелированных пиридинов в качестве растворителя был взят PEG-400 ввиду возможности получения целевых соединений и их выделения. Мы предположили, что ароматические альдегиды могут реагировать с циклическим кетоном с образованием халконов in situ, а затем реагировать с солями пиридиния с целью получения заданных соединений. Для проверки вышеуказанных возможностей была проведена реакция Крёнке.

Так, N-фенацилпиридиний йодид **3**, который получали путем кипячения пиридина с ацетофеноном и йодом, использовали в реакции с циклокетонами и двумя молями ароматического альдегида в среде PEG-400 и при добавлении ацетата аммония. Использование молярного отношения ароматического альдегида к циклогексанону в соотношении 1:1 приводит к ожидаемым продуктам, но с более низкими выходами.

В условиях многокомпонентной реакции в среде PEG-400 смесь реагировала с образованием алициклических конденсированных пиридинов с бензилиденовой группой **4a-f** с высоким выходом (80–90%). Стоит отметить, что при таких условиях ароматические альдегиды, даже те, которые несут электронодонорные метоксигруппы, образуют производные пиридина с высокими выходами.

Проведенный синтез можно описать следующей вероятной схемой превращений:

Ароматический альдегид 2 сначала реагирует с циклическим кетоном 1 с образованием кросс-сопряженной системы 5. Одновременно проходит гидролиз ацетата аммония. Далее ацетат-ион атакует N-фенацилпиридиний йодид 3,

переводя его в енольную форму. Затем следует 1,4-присоединение Михаэля с диеноном с образованием 1,5-дикетона 6. Это промежуточное соединение впоследствии циклизуется в результате присоединения аминогруппы к карбонильной группе с образованием дигидропиридинового кольца, которое, в свою очередь, подвергается ароматизации за счет отщепления воды, пиридиниевого фрагмента с образованием конечного продукта 4. Таким образом, двухстадийный синтез пиридинов по Крёнке может быть объединен в однореакторный синтез. Еще одним преимуществом этого метода является открывающаяся перспектива введения различных замещенных арильных фрагментов с целью их дальнейшего прикладного исследования.

Строение 7-арилиденциклопента[b]пиридинов и 8-арилиден-5,6,7,8-тетрагидрохинолинов было охарактеризовано с помощью ИК, ¹Н и ¹³С ЯМР-спектроскопии. В таблице 1 собраны данные по синтезу аннелированных пиридинов **4а-f**, в таблице 2 представлены температуры плавления и данные элементного анализа, в таблице 3 - данные ЯМР ¹Н и ¹³С, ИК-спектроскопии.

Таблица 1 - Использование PEG-400 в синтезе аннелированных пиридинов **4a-f** при нагревании реагентов при 80 °C.

Продукт	Время р-ции, мин.	Выход, %
4a	10	90
4b	10	82
4c	13	89
4d	15	88
4e	15	80
4f	15	80

Таблица 2 - Физико-химические характеристики синтезированных соединений **4a-f**.

В-во	во Брутто ф-ла	Молек. масса	Т пл.	Элементный анализ	
			°C	Выч, %	Найд, %
4a	$C_{27}H_{21}N$	359	157-159	C=90,25	C=89,28
				H=5,85	H=5,34
				N=3,90	N=3,66
4b	$C_{29}H_{25}NO_2$	419	113-115	C=83,05	C=79,90
				H=5,97	H=5,27
				N=3,34	N=2,86
4c	$C_{27}H_{19}Cl_2N$	428	196-198	C=75,70	C=73,91
				H=4,44	H=4,34
				N=3,27	N=3,17
4d	$C_{28}H_{23}N$	373	135-137	C=90,08	C=89,22
				H=6,17	H=5,42
				N=3,75	N=3,73
4e	$C_{30}H_{27}NO_2$	433	110-112	-	-
4f	$C_{28}H_{21}Cl_2N$	442	208-210	-	-

Таблица 3 - Спектральные данные соединений **4a** и **4d**.

ЯМР ¹Н, δ м.д.	ЯМР ¹³ С, δ м.д.	ИК-спектр. υ, см ⁻¹
8.15 (d, J = 7.6 Hz, 4H, PhH); 7.74 (s, 1H, PyH); 7.71 (s, 1H, PyH); 7.60 (d, 2H, PhH); 7.50 (t, 6H, PhH); 7.46–7.36 (m, 4H, PhH, CH=); 3.22 (s, 4H, CH ₂); 3.18-3.12 (t, 2H, CH ₂); 2.98 (t, 2H, CH ₂)	141.58, 139.75, 136.84, 129.13, 129.09, 128.80, 128.74, 128.71, 128.62, 128.47, 128.43, 128.40, 128.13, 128.09, 127.10, 126.78, 122.82, 121.96, 119.35, 29.31, 27.72	1594 (-C=N-) 1576 (-C=C-)
8.13 (d, J = 7.6 Hz, 2H, PhH); 7.67 (s, 1H, PyH); 7.62 (s, 1H, PyH); 7.57–7.37 (m, 5H, ArH, PhH); 7.31 (d, J = 8.3 Hz, 2H, ArH); 7.25 (s, 1H, CH=); 7.05–6.91 (m, 4H, ArH); 3.88–3.84 (m, 6H, OCH ₃); 3.84 (s, 4H, CH ₂); 3.19-3.13 (t, 2H, CH ₂); 2.96 (t, 2H, CH ₂)	139.49, 136.20, 130.93, 130.44, 130.35, 129.45, 129.40, 128.65, 127.07, 121.26, 114.97, 114.12, 113.93, 55.29, 29.32, 27.82	1606 (-C=N-) 1582 (-C=C-)
8.12 (d, J = 7.6 Hz, 2H, PhH), 7.68 (s, 1H, PyH), 7.63 (s, 1H, PyH), 7.59–7.45 (m, 5H, ArH, PhH), 7.43-7.28 (m, 2H, ArH), 7.25 (s, 1H, CH=), 7.13 (d, J=8.0 Hz, 4H, ArH), 3.65 (s, 4H, CH ₂); 3.19-3.11 (t, 2H, CH ₂); 3.06-2.89 (t, 2H, CH ₂)	-	1597 (-C=N-) 1580 (-C=C-)
8.30 (s, 1H, PyH); 8.14 (d, 4H, PhH); 7.56 (s, 1H, CH=); 7.50-7.38 (m, 11H, PhH); 2.96 (t, J=6.1 Hz, 2H, CH ₂); 2.77 (t, J=6.2 Hz, 2H, CH ₂); 1.83-1.75 (m, 2H, CH ₂)	152.65, 139.56, 136.08, 129.73, 128.94, 128.71, 128.62, 128.38, 128.08, 127.87, 127.73, 126.82, 126.68, 119.67, 114.77, 28.12, 27.91, 23.03	1584 (-C=N-) 1576 (-C=C-)
-	-	1606 (-C=N-) 1576 (-C=C-)
-	-	1581 (-C=N-) 1577 (-C=C-)
	8.15 (d, J = 7.6 Hz, 4H, PhH); 7.74 (s, 1H, PyH); 7.71 (s, 1H, PyH); 7.60 (d, 2H, PhH); 7.50 (t, 6H, PhH); 7.46–7.36 (m, 4H, PhH, CH=); 3.22 (s, 4H, CH ₂); 3.18-3.12 (t, 2H, CH ₂); 2.98 (t, 2H, CH ₂) 8.13 (d, J = 7.6 Hz, 2H, PhH); 7.67 (s, 1H, PyH); 7.62 (s, 1H, PyH); 7.57–7.37 (m, 5H, ArH, PhH); 7.31 (d, J = 8.3 Hz, 2H, ArH); 7.25 (s, 1H, CH=); 7.05–6.91 (m, 4H, ArH); 3.88–3.84 (m, 6H, OCH ₃); 3.84 (s, 4H, CH ₂); 3.19-3.13 (t, 2H, CH ₂); 2.96 (t, 2H, CH ₂) 8.12 (d, J = 7.6 Hz, 2H, PhH), 7.68 (s, 1H, PyH), 7.63 (s, 1H, PyH), 7.59–7.45 (m, 5H, ArH, PhH), 7.43-7.28 (m, 2H, ArH), 7.25 (s, 1H, CH=), 7.13 (d, J=8.0 Hz, 4H, ArH), 3.65 (s, 4H, CH ₂); 3.19-3.11 (t, 2H, CH ₂); 3.06-2.89 (t, 2H, CH ₂) 8.30 (s, 1H, PyH); 8.14 (d, 4H, PhH); 7.56 (s, 1H, CH=); 7.50-7.38 (m, 11H, PhH); 2.96 (t, J=6.1 Hz, 2H, CH ₂); 2.77 (t, J=6.2 Hz,	8.15 (d, J = 7.6 Hz, 4H, PhH); 7.74 (s, 1H, PyH); 7.71 (s, 1H, PyH); 7.60 (d, 2H, PhH); 7.50 (t, 6H, PhH); 7.46–7.36 (m, 4H, PhH, CH=); 3.22 (s, 4H, CH ₂); 3.18-3.12 (t, 2H, CH ₂); 2.98 (t, 2H, CH ₂) 8.13 (d, J = 7.6 Hz, 2H, PhH); 7.67 (s, 1H, PyH); 7.62 (s, 1H, PyH); 7.57–7.37 (m, 5H, ArH, PhH); 7.31 (d, J = 8.3 Hz, 2H, ArH); 7.25 (s, 1H, CH=); 7.05–6.91 (m, 4H, ArH); 3.88–3.84 (m, 6H, OCH ₃); 3.84 (s, 4H, CH ₂); 3.19-3.13 (t, 2H, CH ₂); 2.96 (t, 2H, CH ₂) 8.12 (d, J = 7.6 Hz, 2H, PhH), 7.68 (s, 1H, PyH), 7.69 (s, 1H, PyH), 7.59–7.45 (m, 5H, ArH, PhH), 7.43-7.28 (m, 2H, ArH), 7.25 (s, 1H, CH=); 7.50-7.38 (m, 11H, PhH); 2.96 (t, 2H, CH ₂); 3.19-3.11 (t, 2H, CH ₂); 3.06-2.89 (t, 2H, CH ₂); 2.77 (t, J=6.2 Hz, 2H, CH ₂); 2.7

В спектре ЯМР ¹Н **4d** присутствуют два триплета и мультиплет для шести атомов водорода в алифатической области, учитывающих атомы водорода циклогексанового кольца. С₃-Н ароматический водород пиридина проявился в виде синглета при 8,30 м.д. Спектр ЯМР ¹³С показал восемнадцать сигналов, из которых два были в алифатической области. Карбонильный углерод не наблюдается. По гетероядерному ¹Н-¹³С-корреляционный спектру НЅQС, демонстрирующему взаимодействия между протонами и атомами углерода, протоны арилиденовой группы находятся сигналами ¹Н при 7.56 м.д., ¹³С при 129.73 м.д. ИК-спектр показал характеристические полосы поглощения связи С-N в пиридине при 1584 см⁻¹ и двойной связи С=С при 1576 см⁻¹. Полоса поглощения карбонильной группы отсутствует.

Установив структуру **4d**, затем мы изучили применимость реакции на замещенных аналогах и разработали оптимальные условия синтеза, проводя её на ароматических альдегидах, имеющих различные по влиянию атом хлора и метокси группу, расположенные в пара-положении арильных колец. Указанные альдегиды принимали участие в превращениях в производные пиридина **4e**, **4f** только с умеренными выходами. Никакого другого продукта в реакционной смеси не обнаружено.

Интересен в плане получения плоской системы циклопентан-пиридин стал синтез пиридинов, аннелированных циклом C_5 . В синтезе первого представителя 4a выделена смесь двух геометрических изомеров.

ЯМР ¹Н спектр соединения **4а** сложно построен, соотнесение сигналов протонов в ароматической области затруднительно, так как в соединении три ароматических кольца, сигналы проявляются в виде одного большого мультиплета 7.60-7.36 м.д. В области сильного поля наблюдаются два триплета в области 3.18-3.12 и 2.98 м.д. и один синглет при 3.22 м.д. По интегральным интенсивностям синглет относится к Е-изомеру и соответствует четырем протонам, два триплета (один триплет соответствует двум протонам) — к Z-изомеру. По сумме интегральных интенсивностей можно сделать вывод, что

соотношение Z/Е-изомеров 1:1. С₃-Н ароматический водород пиридина проявился в виде двух синглетов при 7,74 и 7,71 м.д., относящихся к водороду пиридина в двух изомерах. Спектр ЯМР ¹³С показал ожидаемые двадцать один сигнал, из которых три располагаются в алифатической области. Карбонильный углерод не наблюдается. Протон пиридина проявляется двумя пятнами на спектре HSQC и находится сигналами ¹Н при 7.71 и 7.74 м.д., ¹³С при 121.96 и 122.82 м.д., соответственно. ИК-спектр показал характеристические полосы поглощения связи C-N в пиридине при 1594 см⁻¹ и двойной связи С=С при 1576 см⁻¹. Полоса поглощения карбонильной группы отсутствует.

Данный метод синтеза аннелированных циклом C_5 пиридинов был воспроизведен по аналогии с другими ароматическими альдегидами.

В соединении **4b** проявляются протоны метоксигрупп в виде мультиплета в области 3.84-3.88 м.д.

В ЯМР 13 С спектрах соединений **4b** и **4c** ключевыми сигналами являются сигналы двух метиленовых звеньев (29.32, 27.82 м.д.) и отсутствие сигналов карбонильного атома углерода. Это же подтверждает и спектр НМВС. В данном спектре углерод, непосредственно связанный с протоном, проявляется в виде мультиплета, расстояние между кратчайшими сигналами в котором равно J_{CH} , остальные атомы углерода, взаимодействующие через две и более связи, проявляются в виде одиночных точек (кросспиков). Протоны при 2.96 м.д. непосредственно связаны с атомом углерода при 29.32 м.д., взаимодействуют с атомом углерода при 136.20 м.д. Протонам при 3,84-3.88 м.д. соответствует углерод при 55.29 м.д. ИК-спектр показал характеристические полосы поглощения связи C-N в пиридине при 1594 см $^{-1}$ и двойной связи С=С при 1576 см $^{-1}$. Полоса поглощения карбонильной группы отсутствует.

Заключение

- 1. Разработан доступный и препаративно-удобный метод синтеза конденсированных производных пиридина аналогов биологически активных веществ и перспективных гетерофункциональных соединений. По спектроскопическим данным показано существование двух изомеров для 7-арилиденциклопента[b]пиридинов.
- 2. Найдены условия четырёхкомпонентного взаимодействия циклических кетонов, ароматических альдегидов, соли N-фенацилпиридиния и ацетата аммония. Синтез характеризуется более высокими выходами, коротким временем реакции, мягкими условиями, позволяющими синтезам стать экологически благоприятными.
- 3. Впервые двухстадийный синтез производных пиридина Крёнке проведен однореакторно в среде PEG-400.

Список используемых источников

- 1. Katritzky, A. R. Pyrylium Mediated Transformations of Primary Amino Groups into Other Functional Groups / A. R. Katritzky, C.M. Marson // Angew. Chem. 1984. № 23. P. 420.
- 2. Metallosupramolecular Complexes containing Ferrocenyl Groups as Redox Spectators / E. C. Constable [et al.] // J. Chem. Soc., Dalton Trans. 1994. P. 1585.
- 3. Synthesis and Single-Crystal X-ray Characterization of 4,4"-Functionalized 4'-(4-Bromophenyl)-2,2':6',2"-terpyridines / I. Eryazici [et al.] // J. Org. Chem. 2006. № 71. P. 1009–1014.
- 4. Лукевиц, Э. Производные пиридина в арсенале лекарственных средств /
 Э. Лукевиц // Химия гетероцикл. соед. 1995. № 6. С. 723–734.
- 5. Cave, G.W.V. Toward benign syntheses of pyridines involving sequential solvent free aldol and Michael addition reactions / G.W.V. Cave, C. L. Raston // Chem. Commun. 2000. P. 2199.
- 6. An Efficient Improve for the Kröhnke Reaction: One-pot Synthesis of 2,4,6-Triarylpyridines Using Raw Materials under Microwave Irradiation / S. Tu [et al.] // Chem. Lett. 2005. № 34. P. 732.
- 7. Kröhnke pyridines: an efficient solvent-free synthesis of 2,4,6-triarylpyridines / M. Adib [et al.] // Tetrahedron Lett. 2006. P. 5957.
- 8. Kröhnke, F. The specific synthesis of pyridines and oligopyridines / F. Kröhnke // Synthesis. 1976. P. 1.
- 9. Neve, F. Anisometric Cyclometalated Palladium(II) and Platinum(II) Complexes. Structural and Photophysical Studies / F. Neve, A. Crispini, S. Campagna // Inorg. Chem. 1997. № 36. P. 6150.
- 10. Encapsulation of two aromatics by a carcerand-like capsule of nanometre-scale dimensions / L. R. MacGillivray [et al.] // Chem. Commun. 2000. P. 359.