МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра аналитической химии и химической экологии

ТЕСТ-СРЕДСТВА ДЛЯ ОПРЕДЕЛЕНИЯ АМОКСИЦИЛЛИНА

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

направления <u>04.04.01 – Xи</u>	<u> ВИМІ</u>	
Института химии		
Ли Екатерины Петровны		
Научный руководитель		
к.х.н., доцент		И.В. Косырева
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
Зав. кафедрой		
д.х.н., доцент		Т.Ю. Русанова
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия

студентки 2 курса 251 группы

СОДЕРЖАНИЕ

Введение	3
1 β-Лактамные антибиотики: пенициллины и цефалоспорины	
(литературный обзор)	4
2. Экспериментальная часть	5
2.1. Визуально-колориметрическое определение амоксициллина с	
помощью иммобилизованного реактива Фелинга	5
2.1.1 Получение цветовых шкал для визуально-колориметрического	
определения амоксициллина	5
2.1.2 Оценка интервала ненадежности и предела визуально-	
колориметрического определения амоксициллина	6
2.2 Цветометрическое определение амоксициллина с помощью	
иммобилизованного реактива Фелинга	6
2.2.1 Выбор оптимального цветового параметра	6
2.2.2 Выбор оптимальных условий экспресс-определения амоксициллина	
для индикаторных бумаг, порошков и пластин	8
2.2.3 Определение стабильности окраски тест-средств во времени	9
2.2.4 Построение и анализ профилей лепестковых диаграмм при	
определении амоксициллина	9
2.3 Разработка тест-методик для определения амоксициллина в	
лекарственных препаратах марки «АВВА РУС» в таблетках (Россия)	
и «Hemofarm» в капсулах (Сербия)	11
2.3.1 Спектрофотометрическое определение амоксициллина	12
2.3.2 Тест-определение амоксициллина	12
2.3.3 Сравнение результатов определения амоксициллина тест-методом и	
спектрофотометрическим методом. Проверка правильности методом	
«введено-найдено»	13
Заключение	14
Список использованных источников	15

ВВЕДЕНИЕ

Одной из важных задач аналитической химии является разработка простых и эффективных способов определения анализируемых веществ в лекарственных препаратах на предмет наличия фасильфикатов [1; 2].

Для качественного и количественного определения лекарственных препаратов наиболее широко используются как химические, так и инструментальные методы, например высокоэффективная жидкостная хроматография (ВЖЭХ) или инфракрасная спектроскопия. Но высокая стоимость и низкая доступность оборудования, а также требования к квалификации оператора ограничивают применимость данных методов анализа. В связи с этим разработка простых и доступных способов определения лекарственных препаратов является актуальной задачей.

Цель настоящей работы — разработка тест-средств для визуальноколориметрического и цветометрического определения антибиотика β лактамного ряда амоксициллина.

Задачи:

- 1) Выбор оптимальных условий экспресс-определения амоксициллина с реактивом Фелинга на твердой подложке (целлюлозной бумаге, силикагеле).
- 2) Получение цветовых шкал для визуально-колориметрического и цветометрического определения антибиотика.
- 3) Разработка и апробация простой экспрессной методики количественного определения амоксициллина в лекарственных препаратах.

1. β-Лактамные антибиотики: пенициллины и цефалоспорины (литературный обзор)

С открытием антибактериального эффекта природного вещества, полученного из *Penicillium notatum* Александром Флемингом [3] в 1929 году, и более поздней характеристикой Chain и др. [4] наступила новая эпоха в медицине и ветеринарии. В настоящее время пенициллины и цефалоспорины, составляющие группу β - лактамных антибиотиков, широко используются в медицине для терапии и профилактики бактериальных инфекций.

В данной работе проанализирована научная литература за последние 15 лет. Представлена общая характеристика антибиотиков β - лактамного ряда, описана их стабильность и приведены основные методы их определения.

Для качественного и количественного определения лекарственных препаратов наиболее широко используются спектрофотометрические методы, хроматографические методы, люминисцентные и другие (рис.1), но они требуют наличие дорогостоящего оборудования, специализированной лаборатории и специально обученного персонала.

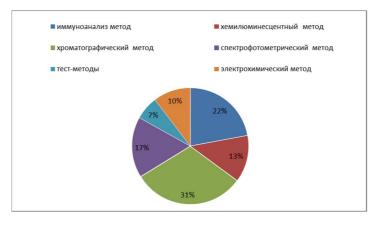


Рисунок — 1 Методы определения лекарственных препаратов в различных объектах

В связи с этим для быстрого и экспрессного скрининга лекарственных препаратов на предмет наличия фальсификатов, наиболее значимым являются простые и недорогостоящие тест—средства.

Как видно из рисунка 1 всего 7% исследуемой литературы приходится на тест-определение лекарственных препаратов.

2. Экспериментальная часть

2.1 Визуально-колориметрическое определение амоксициллина с помощью иммобилизованного реактива Фелинга

2.1.1 Получение цветовых шкал для визуально-колориметрического определения амоксициллина

• индикаторные бумаги

На рис. 2 представлена полученная цветовая шкала после 5 мин нагревания ИБ при 95-100°С. Стандартный раствор амоксициллина 1- 32 мг/мл

Рисунок 2 — Цветовая шкала для определения амоксициллина с помощью индикаторных бумаг, С_{амоксициллина}, мг/мл

• индикаторные пластины

На рис. 3 показана полученная цветовая шкала после 5 мин нагревания ИБ при 95-100°С. Стандартный раствор амоксициллина 1-8 мг/мл.

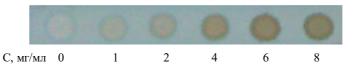


Рисунок 3 — Цветовая шкала для определения амоксициллина с помощью индикаторных пластин

• индикаторные порошки

На рис. 4 представлена полученная цветовая шкала после 5 мин нагревания ИБ при 95-100°С. Стандартный раствор амоксициллина 1-8 мг/мл

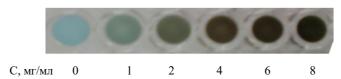


Рисунок 4 — Цветовая шкала для определения амоксициллина с помощью индикаторных порошков

Согласно рисункам 2, 3, 4 нижняя граница определяемых содержаний амоксициллина для индикаторных бумаг, порошков, пластин составила 1мг/мл. Диапазон определяемых содержаний для индикаторных бумаг составил 1-32 мг/мл, для индикаторных порошков и пластин 1-8 мг/мл.

2.1.2 Оценка интервала ненадежности и предела визуально-колориметрического определения амоксициллина

Определял интервал ненадежности аналита. [31] На рисунке 8 представлена кривая эффективности — зависимость частоты обнаружения амоксициллина от образца сравнения, с заданной вероятностью 95%.

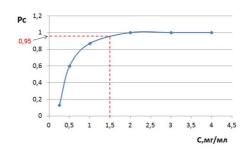


Рисунок 8 — Кривая эффективности при определении амоксициллина с помощью индикаторных бумаг

Таблица 2 — Результаты экспериментальной оценки предела визуального определения амоксициллина с использованием индикаторной бумаги, индикаторной пластины и индикаторного порошка, n=48

Концентация,мг/мл	Индикаторная			Индикаторные				Индикаторный				Й			
	бумага			пластины			порошок								
Цветовая шкала	5; 2; 0			8; 4; 0			8; 4; 0								
Задано	4,0			7,0			7,5								
Варианты	5	3,5	2	1	0	8	6	4	2	0	8	6	4	2	0
Число ответов	10	38	-	-	-	35	13	-	-	-	31	17	-	-	-
S_{c} ,мг/мл	0,64			1,01			0,98								
C _{lim} ,мг/мл		1,92			3,03			2,9							

Как видно из таблицы 2 предел визуального обнаружения амоксициллина составил: 1,92 мг/мл для индикаторных бумаг; 3,03 мг/мл для индикаторных пластин; 2,9 мг/мл для индикаторных порошков.

2.2 Цветометрическое определение амоксициллина с помощью иммобилизованного реактива Фелинга

2.2.1 Выбор оптимального цветового параметра

• Индикаторные бумаги

Анализировали цветовые модели RGB, HSB, CMYK, фиксировали значения интенсивностей цветовых параметров для различных концентраций амоксициллина. Оптимальным по чувствительности (tgα) был выбран канал В из модели RGB (57,8), коэффициент регрессии 0,981. Линейная зависимость интенсивности канала В от концентрации амоксициллина представлена на рисунке 5

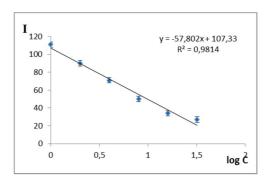


Рисунок 5 — Зависимость интенсивности цветового канала В (Blue) от концентрации амоксициллина. Столбики ошибок указывают стандартное отклонение для $\mathbf{n}=3$

• Индикаторные пластины

Оптимальным по чувствительности был выбран канал В (47,1) с коэффициентом регрессии 0,993 (рис. 6).

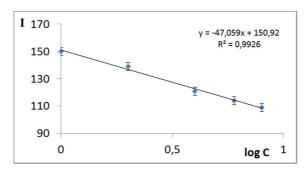


Рисунок 6 – Зависимость интенсивности цветового канала В (Blue) от концентрации амоксициллина. Столбики ошибок указывают стандартное отклонение для n = 3

• Индикаторные порошки

Оптимальным по чувствительности был выбран канал В (34,5) с коэффициентом регрессии 0,991 (рис. 7).

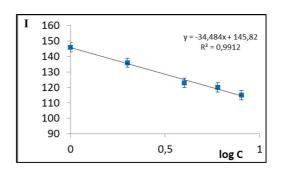


Рисунок 7 – Зависимость интенсивности цветового канала В (Blue) от концентрации амоксициллина. Столбики ошибок указывают стандартное отклонение для n = 3

Как видно из рисунков 5, 6, 7 оптимальным каналом для индикаторных бумаг, пластин и порошков был выбран цветовой канал В из модели RGB.

2.2.2 Выбор оптимальных условий экспресс-определения амоксициллина для индикаторных бумаг, порошков и пластин

• Индикаторные бумаги

Как показано на рис. 8 при увеличении времени нагревания индикаторной бумаги после 10 минут нагревания интенсивность не изменяется. Оптимальная температура нагрева 95-100°C

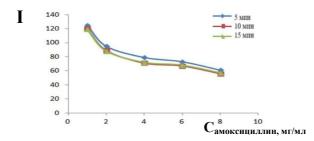


Рисунок 8— Зависимость интенсивности цветового канала B от концентрации амоксициллина (1-8 мг/мл) после 5, 10, 15 мин нагревания UB при 95-100°C

• Индикаторные пластины

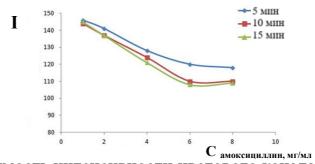


Рисунок 9 — Зависимость интенсивности цветового канала В от концентрации амоксициллина $(1-8\ \text{мг/мл})$ после 5, 10, 15 мин нагревания индикаторных пластин при 95-100°C

• Индикаторные порошки

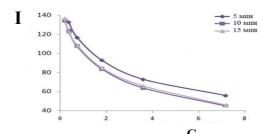


Рисунок 10-3ависимость интенсивности цветового канала G от концентрации амоксициллина $(1-8\ \text{мг/мл})$ после $5{,}10{,}15\ \text{мин}$ нагревания индикаторных порошков при $95{-}100{\,}^{\circ}\mathrm{C}$

Нами определено оптимальное время нагревания тест-средств. Для этого раствор амоксициллина в диапазоне концентраций 0 – 8 мг/мл наносили на индикаторные бумаги, индикаторные порошки и индикаторные пластины с реактивом Фелинга, нагревали при 95-100°С в течение 5, 10 и 15 мин, помещали в бокс и фотографировали. Оптимальным временем нагревания является 10 мин для каждого тест-средства. Следовательно, дальнейшее экспресс-определение проводили через 10 мин.

2.2.3 Определение стабильности окраски тест-средств во времени

На протяжении 30 дней ИБ фотографировали и полученные фотографии обрабатывали.

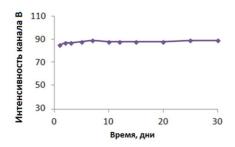


Рисунок 11 — Зависимость интенсивности цветового канала В индикаторных бумаг, полученных при действии 2 мг/мл амоксициллина в течение 30 дней.

Как видно из рисунка 11 окраска индикаторных бумаг с реактивом Фелинга не изменятся в течение месяца.

2.2.4 Построение и анализ профилей лепестковых диаграмм при определении амоксициллина

В программе Microsoft Office Excel строили профили лепестковых диаграмм в координатах цветовых параметров R, G, B, C, M, Y, K, H, S, V для различных концентраций амоксициллина (рис. 12).

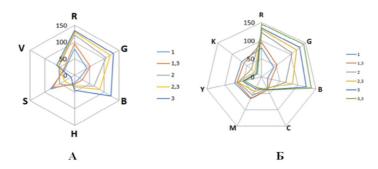


Рисунок 12 – Профили лепестковых диаграмм (A) в координатах цветовых моделей R, G, B, H, S, V; (Б) в координатах R, G, B, C, M, Y, K.

Как видно из рисунка 12 площадь профилей ЛД визуально возрастает с увеличением концентраций амоксициллина.

Рассчитывали параметры площадь (S) и периметр (P) полученных лепестковых диаграмм в MS Excel по следующим формулам:

$$P = \sqrt{a^2 + b^2 - 2ab \cdot \cos(ab)}$$
$$S = a + b \cdot \sin(ab)$$

где a,b – стороны треугольника;

 $\cos(ab)$ – косинус угла между сторонами a,b.

sin(ab) – синус угла между сторонами a,b.

На рисунке 13 представлены полученные линейные зависимости площади и периметра от концентрации (pC) амоксициллина.

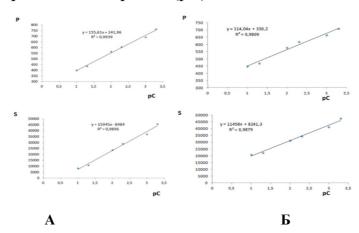


Рисунок 13 — Зависимость площади (S), периметра (P) лепестковых диаграмм от концентрации амоксициллина: (A) в координатах R, G, B, H, S, V; (Б) в координатах R, G, B, C, M, Y, K

Полученные линейные зависимости площади ($S_{R,G,B, H,S,V} = 5000-45000$; $S_{R,G,B,C,M,Y,K} = 20000-45000$) и периметра ($P_{R,G,B,H,S,V} = 400-750$; $P_{R,G,B,C,M,Y,K} = 450-700$) от рС лепестковых диаграмм можно применять для количественной оценки содержания амоксициллина.

В таблице 3 представлена информация ПО визуальноколориметрической цветометрической обработке И амоксициллина. Полученные использовать ДЛЯ качественного данные онжом количественного определения антибиотика, как в модельных растворах, так и в реальных объектах.

Таблица 3 — Некоторые параметры тест-методик для определения амоксициллина

Способ	НГОС	ДОС	Уравнение регрессии	\mathbb{R}^2	P	S				
определения	мг/мл	мг/м								
		Л								
Индикаторные бумаги										
ВК	1	1-32	-	-	-	-				
Цветометриче	ская обра	ботка								
RGB	1	1-32	y = -57,802x + 107,33	0,9814	-	-				
ЛД	1	1-8	y=155,61x+241,66 (P)	0,9939 (P)	400-750	5000-				
(RGB),			y=15945x+8484(S)	0,9896(S)		45000				
(HSB)			y=114,04x+336.2 (P)	0,9809 (P)	450-700	20000-				
(RGB),			y=11458x+8241,3(S)	0.9879(S)		45000				
(CMYK)										
Индикаторные	порошки									
ВК	1	1-8	-	-	-	-				
Цветометриче	еская обра	ботка								
RGB	1	1-8	y = -34,484x + 145,82	0,9912	-	-				
Индикаторные	Индикаторные пластины									
ВК	1	1-8	-	-	-	-				
Цветометриче	еская обра	ботка			·					
RGB	1	1-8	y = -47,059x + 150,92	0,9926	-	-				

2.3 Разработка тест-методик для определения амоксициллина в лекарственных препаратах марки «АВВА РУС» в таблетках (Россия) и «Нетобатт» в капсулах (Сербия)

В соответствии с полученными данными и литературным обзором, нами была разработана тест-методика для определения амоксициллина в лекарственных препаратах марки «АВВА РУС» в таблетках (Россия) и «Нетобатт» в капсулах (Сербия).

2.3.1 Спектрофотометрическое определение амоксициллина в лекарственных препаратах.

Регистрировали спектры поглощения свежеприготовленного 0,01M HCl раствора амоксициллина (рис 15 A). Строили зависимость величины оптической плотности при $\lambda = 273$ нм от концентрации антибиотика (рис. 14). Коэффициент регрессии равен 0,995.

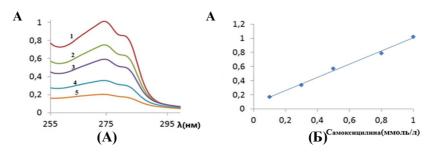


Рисунок 14 - (A) Спектры поглощения амоксициллина в 0,01 М HCl, концентрация амоксициллина (инъекционный) (ммоль/л): 1-0,1; 2-0,3; 3-0,5; 4-0,8; 5-1; pH 2. (Б) Зависимость оптической плотности от концентрации амоксициллина (ммоль/л)

Таблица 4 — Результаты определения амоксициллина спектрофотометрическим методом

Препарат	Заявлено, мг	Найдено	S_{r}	%
Таблетки «АВВА РУС», Россия	250	250±4	0,01	0
Капсулы «Hemofarm», Сербия	500	495±10	0,02	1

Содержание амоксициллина, определенное спектрофотометрическим методом, соответствует заявленному.

2.3.2 Тест-определение амоксициллина

В таблице 5 представлены результаты определения амоксициллина тест-методом.

Таблица 5 – Результаты определения амоксициллина тест-методом

Препарат	Заявлено, мг	Найдено	S _r	%
Таблетки «АВВА РУС», Россия	250	234±14	0,02	6,4
Капсулы «Нетоfarm», Сербия	500	503±25	0,03	1,2

Согласно таблице 5, содержание амоксициллина, определяемое тестметодом соответствует заявленному. Относительная погрешность для индикаторных бумаг не превышает 6,4%

2.3.3 Сравнение результатов определения амоксициллина тест-методом и спектрофотометрическим методом.

Проверка правильности тест-методики методом «введено-найдено»

Для проверки правильности методики тест-определения амоксициллина применяли метод «введено-найдено». (табл. 6).

В таблице 6 представлены результаты определения содержание амоксициллина, найденной с помощью индикаторных бумаг.

Введено, мг/мл	Найдено, мг/мл	S_{r}	%
10	10±1	0,05	0
30	28±2	0,07	6,6

Таблица 6 – Проверка правильности тест-методики методом «введенонайдено» (n=3, P=0,95)

Данные методы применимы для количественного определения амоксициллина в лекарственных препаратах. Относительна погрешность не превышает 6,6 % . Результаты представлены в таблице 7

Таблица 7 — Результаты определения амоксициллина в образцах лекарственных препаратов спектрофотометрическим и тест-методом (n=3, P=0.95)

Препарат	Заявлено,	Найдено, мг						
	МΓ	Спектро-	S	%	Тест-	S	%	
		фотометрия	r		методика	r		
Таблетки «АВВА РУС»,	250	250±4	0,01	0	234±14	0,02	6,4	
Россия								
Капсулы «Hemofarm»,	500	495±10	0,02	1	503±25	0,03	1,2	
Сербия								

Заключение

- 1. Проведен анализ литературных данных по методам определения β-лактамных антибиотиков в различных объектах за последние 15 лет. Тестметодам посвящено 7%.
- 2. Изучены способы иммобилизации реактива Фелинга на бумажном носителе, силикагеле и пластинах ТСХ. Подобраны оптимальные условия экспресс-определения амоксициллина с реактивом Фелинга на твердой подложке: температура нагревания 95-100°С, время реакции 10 мин, рН 7,4 (фосфатно-солевой буфер)
- 3. Получены цветовые шкалы для визуально-колориметрического и цветометрического определения антибиотика: индикаторная бумага (НГОС: 1 мг/мл, ДОС: 1 32 мг/мл), индикаторная пластина (НГОС: 1 мг/мл, ДОС: 1 8 мг/мл), индикаторный порошок (НГОС: 1 мг/мл, ДОС: 1 8 мг/мл).
- 4. Построены профили лепестковых диаграмм в цветовых моделях RGBHSV и RGBCKYM при тест-определении амоксициллина, получены линейные зависимости площади (S_1 =5000-45000, R^2 = 0,989; S_2 =20000-45000, R^2 = 0,987) и периметра (P_1 = 400-750, R^2 = 0,993; P_2 = 450-700 R^2 =0,981) лепестковых диаграмм от концентрации антибиотика.
- 5. Определён предел обнаружения при визуальноколориметрическом определении амоксициллина для индикаторных бумаг $(C_{lim}=1,9)$ индикаторных порошков $(C_{lim}=3,0)$ для индикаторных пластин $(C_{lim}=2,9)$.
- 6. Проведено определение амоксициллина в таблетках «АВВА производитель Россия 250 (заявлено MΓ, найдено спектрофотометрическим методом 250 \pm 4 ($S_{_{r}}=0{,}01$) и тест-методом 234 \pm 14 $(S_{_{\rm r}}=0.02))$ и в капсулах «Нетоfarm» (Сербия) (заявлено 500 мг, найдено спектрофотометрическим методом $495\pm10~(S_r=0.02)$ и тест-методом 503 ± 25 0,03)). Полученные результаты соответствуют (S заявленными производителями.
- 7. Правильность тест-определения в модельных растворах и реальных объектах доказана методом «введено-найдено» ($S_{r1}=0.05;\ S_{r2}=0.07$) и спектрофотометрическим методом ($S_{r1}=0.01;\ S_{r2}=0.02$).

Список использованных источников

- 1. Чеботарев А.Н., Снигур Д.В., Бевзюк Е.В., Ефимова И.С. Анализ тенденций развития метода химической цветометрии (Обзор) // Методы и объекты химического анализа 2014. Т. 9. № 1. С. 4-11
- 2. Щетинин Е. В. и др. Результаты мониторинга потребления противомикробных препаратов в амбулаторной практике // Медицинский вестник Северного Кавказа. 2015. Т. 10. № 1. С. 37.
- 3. Распоряжение Правительства РФ от 23 октября 2017 г. № 2323-р «Об утверждении перечня жизненно необходимых и важнейших лекарственных препаратов на 2018 г.».
- 4. Алексеев В.Г., Демская Е.В., Милашс Е.А, Иголкин, В.В Кислотноосновные свойства амоксициллина // Журнал общей химии. 2005. Т. 75. № 7. С.1211—1214.
- 5. Verdon E. Antibiotic residues in muscle tissues of edible animal products // Safety Analysis of Foods of Animal Origin. 2011. P. 249.
- 6. Adrian J. et al. A multianalyte ELISA for immunochemical screening of sulfonamide, fluoroquinolone and β-lactam antibiotics in milk samples using class-selective bioreceptors // Analytical and bioanalytical chemistry. 2008. V. 391. №. 5. P. 1703-1712.
- 7. Lara F. J. et al. Advances in the determination of β -lactam antibiotics by liquid chromatography // TrAC Trends in Analytical Chemistry. 2012. V. 38. P. 52-66.
- 8. Terrado-Campos D. et al. Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorescence detection // Food chemistry. 2017. Vol. 221. P. 1277-1284.
- 9. Hanko V. P., Rohrer J. S. Determination of neomycin sulfate and impurities using high-performance anion-exchange chromatography with integrated pulsed amperometric detection // Ibid. 2007. Vol. 43. №1. P. 131-141.
- 10. Шачнева Е. Ю. Способы определения амикацина и доксиламина в лекарственных формах // Астраханский вестник экологического образования. 2013. №. 3. С.103-104.
- 11. Чапленко А. А. и др. Сорбционно-цветометрическое определение действующих веществ в лекарственной субстанции тетрациклина гидрохлорида и в растворе для инъекций цианокобаламина // Разработка и регистрация лекарственных средств. 2016. № 3. С. 134-137.