МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра метеорологии и климатологии

Многолетняя изменчивость температуры почвы в летний период

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента (ки)5 курс	са <u>521</u> группы					
направления (специальности) 05.03.05 Прикладная гидрометеорология						
	код и наименование	направления (специальности)				
ге	ографического факуль	тета				
наимен	ование факультета, института, колл	п еджа				
Ермоп	иной Альмиры Менди	іхановны				
	фамилия, имя, отчество					
Научный руководитель						
доцент, к.г.н.		Н.В. Короткова				
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия				
И.о. зав. кафедрой						
доцент, к.г.н.		М.Ю. Червяков				
TOTAVIOCTI VII CTETIEII VII 2021IVE	полимен пата					

Введение. К неблагоприятным для сельского хозяйства явлениям относят засухи, суховеи, пыльные бури, град, сильные ливни, туманы, сильные морозы, заморозки, малоснежье, многоснежье и другие явления, вызывающие повреждение растений, а также сложные погодные условия во время уборки урожая.

Также для сельского хозяйства важен один из метеорологических параметров, такой как температура поверхности почвы. Температура поверхности почвы — это температура ее верхнего слоя (толщиной несколько миллиметров), свободного от растительного покрова, хорошо взрыхленного и не затеняемого от солнца, а в зимнее время при наличии снежного покрова — температура поверхности снега.

Температура поверхности почвы влияет на ход корневого питания у растений: этот процесс возможен лишь при условии, когда температура почвы на всасывающих участках на несколько градусов ниже температуры наземной части растения. Нарушение этого равновесия влечет за собой угнетение жизнедеятельности растения, и даже его гибель.

В задачи настоящей курсовой работы входит рассмотрение основных неблагоприятных агроклиматических условий погоды с целью исследования климатического режима температуры почвы на станции Саратов ЮВ в летний период. Исходными данными для выполнения курсовой работы являлись среднемесячные значения максимальной и минимальной температуры поверхности почвы на станции Саратов ЮВ с 1955 по 2015 гг. в летний период.

Цель курсовой работы: исследовать режим изменения максимальной и минимальной температуры на поверхности почвы на станции Саратов Юго-Восток в летний период.

Задачи:

- Рассчитать статистические характеристики среднемесячной максимальной и минимальной температуры на поверхности почвы в летний период на станции Саратов ЮВ.

- Рассчитать повторяемость различных градаций максимальной и минимальной температуры поверхности почвы в летний период на станции Саратов ЮВ.
- Изучение сезонного хода максимальной и минимальной температуры поверхности почвы в летний период.

Основное содержание работы. Метеорология, наука об атмосфере и происходящих в ней процессах. Основной раздел метеорологии - физика атмосферы, исследующая физические явления и процессы в атмосфере. Химические процессы в атмосфере изучаются химией атмосферы - новым, быстро развивающимся разделом метеорологии является изучение атмосферных процессов теоретическими методами гидроаэромеханики - задача динамической метеорологии, одной из важных проблем которой является разработка численных методов прогнозов погоды. Другими разделами метеорологии являются: наука о погоде и методах её предсказания синоптическая метеорология и наука о климатах Земли - климатология, обособившаяся самостоятельную дисциплину. В ЭТИХ пользуются как физическими, так и географическими методами исследования, однако в последнее время физические направления в них стали ведущими. Влияние атмосферных факторов на биологические процессы изучается биометеорологией, включающей биометеорологию человека [2].

Одним из разделов современной метеорологии является агрометеорология.

Агрометеорология - раздел сельскохозяйственной метеорологии, изучающий метеорологические условия в их взаимодействии с процессами роста, развития, формирования урожая сельскохозяйственных культур и агротехническими мероприятиями [3].

Глобальное изменение климата с его региональными проявлениями является одной из главных проблем XXI в. Особое место в этом ряду занимает проблема соответствующих адаптационных изменений сельскохозяйственных ресурсов для обеспечения продовольственной безопасности крупных регионов [4]. В связи с этим чрезвычайно важно заранее предвидеть тенденции

изменения климата, исследовать и прогнозировать отклик агросферы на них, разработать эффективные пути ее адаптации к новым условиям, независимо от конкретных причин (природных или антропогенных), обуславливающих эти изменения.

В данном пункте описывается сезонный ход средней месячной максимальной и минимальной температуры поверхности почвы на станции Саратов ЮВ в летний период. В работе использованы среднемесячные значения максимальной и минимальной температуры почвы на станции Саратов ЮВ за летний период 1955 – 2015 годы.

На рисунке 1 наглядно представлен сезонный ход средних значений максимальной температуры поверхности почвы в летний соответствии с данным рисунком можно сказать, что минимальное значение значений максимальной температуры средних поверхности наблюдаются в августе, и ее среднемесячное значение составляет 41,6°C. В июле отмечается наибольшее значение максимальной температуры поверхности почвы (47,1°C).

На рисунке 2 представлен сезонный ход средних значений минимальной температуры поверхности почвы в летний период. В соответствии с рисунком можно сказать, что минимальное значение средних значений минимальной температуры поверхности почвы наблюдаются в июне, и ее среднемесячное значение составляет 11,8°C. В июле отмечается наибольшее значение минимальной температуры поверхности почвы (14,6°C).

На рисунках 3 и 4 показаны максимальные, минимальные значения температуры поверхности почвы, а также размах варьирования этих значений.

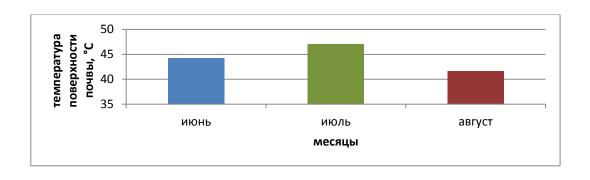


Рисунок 1 — Сезонный ход средних значений максимальной температуры поверхности почвы в летний период на станции Саратов ЮВ с 1955 по 2015 гг. (составлено автором)

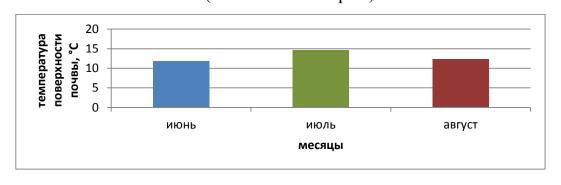


Рисунок 2 — Сезонный ход средних значений минимальной температуры поверхности почвы в летний период на станции Саратов ЮВ с 1955 по 2015 гг.

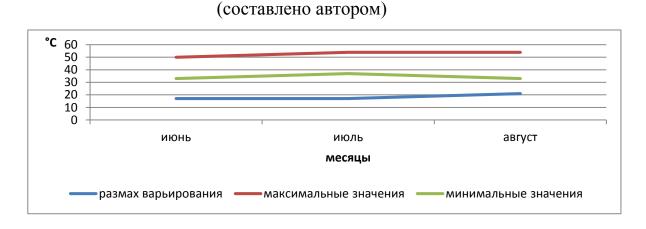


Рисунок 3 — Сезонный ход значений из ряда максимальной температуры почвы на станции Саратов ЮВ в летний период за 1955-2015 гг.

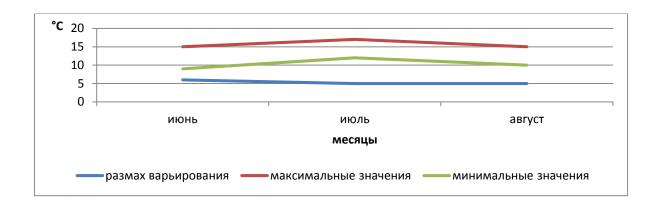


Рисунок 4 — Сезонный ход значений из ряда минимальной температуры почвы на станции Саратов ЮВ в летний период за 1955-2015 гг.

В разделе представлены такие статистические характеристики температуры почвы на станции Саратов Юго-Восток в летний период за 1955-2015 годы, как среднее многолетнее значение, среднее квадратическое отклонение, коэффициент вариации наибольшие и наименьшие значения из рядов экстремальных температур, размах варьирования, а также их ошибки. Расчет статистических характеристик проводился по следующим формулам:

1 Среднее многолетнее значение:

$$x_{\rm cp} = \frac{\sum x_i}{n} \tag{1}$$

2 Среднее квадратическое отклонение:

$$\sigma_x = \sqrt{\left[\frac{\sum (x_i - x_{cp})^2}{(n-1)}\right]}, \text{при } n > 30.$$
 (2)

3 Размах варьирования:

$$R = X_{\text{Makc}} - X_{\text{MuH}} \tag{3}$$

4 Коэффициент вариации:

$$c_{\chi} = \frac{\sigma_{\chi}}{\chi_{\rm cp}} \tag{4}$$

Ошибки статистических величин рассчитывались по следующим формулам:

1 Среднего арифметического значения:

$$\sigma_{xcp} = \frac{\sigma_x}{\sqrt{n}} \tag{5}$$

2 Среднего квадратического отклонения:

$$\sigma_{\sigma} = \frac{\sigma_{x}}{\sqrt{(2n-1)}} \tag{6}$$

3 Коэффициента вариации:

$$\sigma_c = C_x \frac{\sqrt{(1 + C_x^2)}}{\sqrt{2n}} \tag{7}$$

Рассчитанные значения статистических характеристик максимальной температуры почвы представлены в таблице 1.

Таблица 1 - Статистические характеристики максимальной температуры поверхности почвы на станции Саратов ЮВ в летний период за 1955-2015 гг. (составлено автором)

Месяц	Статистические характеристики					
ТИССИЦ	$X_{cp}\pm\sigma$, t°C	$\sigma x \pm \sigma_{\sigma}, t^{\circ}C$	$C_x \pm \sigma_c$, $t^{\circ}C$	X _{max} , t°C	X _{min} , t°C	R, t°C
Июнь	44,2 ±0,55	$3,9 \pm 0,39$	$0,08\pm0,008$	50	33	17
Июль	$47,1\pm0,49$	$3,5\pm0,35$	$0,07\pm0,007$	54	37	17
Август	41,6±0,62	4,4 ±0,35	0,10±0,01	54	33	21

В летние месяцы среднемесячные значения максимальной температуры почвы изменяются от $44,2^{\circ}$ С в июне до $47,1^{\circ}$ С в июле, а затем в августе до $41,6^{\circ}$ С.

Среднеквадратическое отклонение в летние месяцы в июне составляет 3,9°С, в июле среднеквадратичное отклонение 3,5°С, а в августе 4,4°С. Максимальная величина среднемесячной максимальной температуры поверхности почвы соответствует в июле и августе 54°С, в июне значение максимальной среднемесячной максимальной температуры почвы составило 50°С. Минимальная величина среднемесячной максимальной температуры поверхности почвы в летний период: в июне и в августе 33°С, а в июле 37°С.

Размах варьирования в июне и июле составляет 17°C, а в августе 21°C. Очень маленькая величина коэффициента вариации в летний период: 0,07 в июле и 0,08 в июне. В августе этот коэффициент составляет 0,1.

Рассчитанные значения статистических характеристик минимальной температуры почвы представлены в таблице 2.

В таблице 2 представлены следующие характеристики:

 X_{cp} — среднее месячное значение минимальной температуры поверхности почвы, вычисленное для периода $1955-2015~\mathrm{гr}$.

Таблица 2 - Статистические характеристики минимальной температуры на поверхности почвы на станции Саратов ЮВ в летний период за 1955-2015 гг. (составлено автором)

Месяц	Статистические характеристики					
ТИССИЦ	$X_{cp}\pm\sigma$, t°C	$\sigma_x \pm \sigma_\sigma$, t°C	$C_x \pm \sigma c$, $t^{\circ}C$	X _{max} , t°C	X _{min} , t°C	R, t°C
Июнь	$11,7 \pm 0,18$	$1,3\pm0,13$	0,11±0,01	15	9	6
Июль	14,5±0,18	$1,3\pm0,13$	0,09±0,009	17	12	5
Август	12,3±0,16	$1,2 \pm 0,12$	0,09±0,009	15	10	5

Как видно из вышеуказанной таблицы, минимальная температура почвы в летний период имеет значение в июне — 11,7°C, увеличивается в июле до 14,5°C, а в августе уменьшается до 12,3°C. Наибольшая величина среднемесячной минимальной температуры почвы соответствует 15°C в июне и августе, в июле 17°C. Наименьшая величина среднемесячной минимальной температуры почвы в летний период: в июне 9°C, в июле 12°C, в августе 10°C.

В соответствии с таблицей 2 можно сказать, что значения среднего квадратического отклонения σ_x составили 1,3°C для июня и июля, 1,2°C для августа соответственно. Так как ясно видно, что значения σ_x составляют менее 10% от соответствующих средних месячных значений минимальной

температуры поверхности почвы, то можно утверждать, что выборка репрезентативна.

Из таблицы 2 видно, что значения σ_{σ} равны для июня, июля - 0,13, для августа - 0,12. В связи с тем, что отношение ошибок среднего квадратического отклонения к соответствующим значениям самого среднего квадратического отклонения для всех трех месяцев составляет 10% и менее, можно сказать, что выборка репрезентативна.

Исходя из данных, представленных в таблице 2, можно сказать, что значения коэффициента вариации достаточно малы и составляют 0,11 для июня и 0,09 для июля и августа. Это говорит о том, что разброс средних месячных значений минимальной температуры поверхности почвы невелик и выборка однородна. Из таблицы 2 видно, что максимального значения размах варьирования R достигает в июне, когда он составляет 6°C, а минимального - в июле и августе (5°C).

В работе рассчитана повторяемость различных градаций экстремальных температур на поверхности почвы. Результаты представлены в таблице 3 для максимальных температур и в таблице 4 для минимальных температур.

Таблица 3 - Повторяемость различных градаций (число случаев / %) максимальной температуры на поверхности почвы на станции Саратов ЮВ в летний период (составлено автором)

Геотогии 9 <i>С</i>	Месяцы			Распо
Градации, °С	Июнь	Июль	Август	Всего
30 - 33	1 / 2	-	2/4	3 / 2
33,1 - 36	1 / 2	-	5 / 10	6 / 4
36,1 - 39	4/8	1 / 2	6 / 12	11 / 7,3
39,1 - 42	8 / 16	5 / 10	20 / 40	33 / 22
42,1 - 45	15 / 30	10 / 20	7 / 14	32 / 21,4
45,1 - 48	15 / 30	18 / 36	6 /12	39 / 26
48,1 - 51	6 / 12	11 / 22	3 / 6	20 / 13,3
51,1 - 54	-	5 / 10	1 / 2	6 / 4
Всего	50 / 100	50 / 100	50 /100	150 / 100

В первом месяце лета — июне наибольшая повторяемость приходится на градации 42,1-45°С и 45,1-48°С, что соответствует 30% для каждого месяца. На градацию 39,1-42°С приходится 16%. Наименьшая повторяемость отмечается в градации 30-33° С и 33,1-36С, что составляет всего 2% за один месяц. Градации с температурой поверхности почвы 51,1-54°С в июне не наблюдалось. Во втором месяце лета — июле наибольшая повторяемость приходится на градацию 45,1-48°С, что составляет 36%. Градации с температурой поверхности почвы 33,1-36°С в июле не наблюдалось. Наименьшая повторяемость наблюдается в градации 36,1-39°С, составляет 2%. Немного больше повторяемости приходится на градации 39,1-42 и 51,1-54°С, в процентах 10%. На градацию 48,1-51°С попадает 22% случаев. В августе самая наибольшая повторяемость попадает в градацию 39,1-42°С и составляет 40% или 20 случаев. В градации 42,1-45°С повторяемость равна 14%. В градации 51,1-54°С наблюдается наименьшая повторяемость и составляет 2%.

В целом за летний период наибольшая повторяемость максимальных температур на поверхности почвы приходится на градацию 45,1- 48° С, что составляет 26 %. Немного меньше повторяемость для градаций 39,1- 42° С и 42,1-45° С, 21-22 %. Наименьшая повторяемость приходится на градацию 30-33° С, всего 2%.

Таблица 4 - Повторяемость различных градаций (число случаев / %) минимальной температуры на поверхности почвы на станции Саратов ЮВ в летний период (составлено автором)

Градации, °С	Месяцы			Распо	
	Июнь	Июль	Август	Всего	
9 - 11	21 / 42	-	12 / 24	33 / 22%	
11,1 – 13	25 / 50	12 / 24	29 / 58	66 / 44%	
13,1 - 15	4 / 8	25 / 50	9 / 18	38 / 25,3%	
15,1 - 17	-	13 / 26	-	13 / 8,7%	
Всего	50 / 100	50 / 100	50 / 100	150 / 100%	

В таблице 4 представлена повторяемость различных градаций минимальной температуры поверхности почвы..

Как видно из таблицы 4, за летний период наиболее часто повторяются значения минимальной температуры поверхности почвы в градации 11,1-13°C (66 случаев или 44%). В июне такие значения отмечались в 25 случаях, в июле — в 12 случаях, а в августе - в 29 случаях. В градации 13,1 - 15°C минимальная температура поверхности почвы наблюдалась в 4 случаях в июне, в 25 случаях в июле, а в ноябре в 9 случаях. Значительно реже отмечались значения минимальной температуры поверхности почвы в пределах от 9 до 11°C - 21 случай в июне и 12 случаев в августе. Значения минимальной температуры поверхности почвы в градации 15,1 - 17°C отмечались только в июле (13 случаев).

В целом за летний период наибольшая повторяемость минимальной температуры приходится на градацию $13,1-15^{\circ}$ С, которая составляет 38 случаев или 25,3%. Меньше всего отмечалась градация $15,1-17^{\circ}$ С. Она составляет всего 13 случаев или 8,7%.

Заключение. Анализ климатического режима температуры поверхности почвы на станции Саратов ЮВ проводился по данным за период наблюдений с 1955 по 2004 год для летнего сезона. По результатам проведенных исследований можно сделать следующие выводы:

- 1. В сезонном ходе максимальной температуры поверхности почвы в летний период их величина изменяется несущественно: минимальное значение наблюдаются в августе, когда среднемесячное значение средних максимумом составляет 41,6°С. В июле отмечается наиболее высокое значение средней максимальной температуры (47,1°С).
- 2. В сезонном ходе средних значений минимальной температуры поверхности почвы также нет существенных различий. Самых низких значений минимальная температура достигает в июне, и ее среднемесячное значение составляет 11,8°С. В июле отмечается наибольшее значение средней минимальной температуры поверхности почвы (14,6°С).

- 3 Среднеквадратическое отклонение максимальной температуры поверхности почвы в летние месяцы в июне составляет 3,9°С, в июле среднеквадратичное отклонение 3,5°С, а в августе 4,4°С. Значения среднего квадратического отклонения σ_x минимальной температуры поверхности почвы составили 1,3°С для июня и июля, 1,2°С для августа соответственно. Так как ясно видно, что значения σ_x составляют менее 10% от соответствующих средних месячных значений минимальной температуры поверхности почвы, то можно утверждать, что выборка репрезентативна.
- 4. Исследование экстремальных величин температуры поверхности почвы показало, что наибольших значений максимальная температура достигает в июле и августе и составляет 54°C, в июне этот показатель ниже 50°C. Наиболее низкие отметки максимальных температур составляют в июне и в августе 33°C, а в июле 37°C.
- 5. Максимальная величина минимальной температуры почвы соответствует 15°С в июне и августе, а в июле 17°С. Наименьшая величина минимальной температуры почвы в летний период: в июне 9°С, в июле 12°С, в августе 10°С.
- 6. Размах варьирования значений максимальных температур поверхности почвы в июне и июле составляет 17°C, а в августе 21°C.
- 7. Для минимальных температур размах варьирования достигает в июне 6°C, а- в июле и августе 5°C.
- 8. Для максимальных температур поверхности почвы очень маленькая величина коэффициента вариации в летний период: 0,07 в июле и 0,08 в июне. В августе этот коэффициент составляет 0,1. Для минимальных температур значения коэффициента вариации также малы и составляют 0,11 для июня и 0,09 для июля и августа. Это говорит о том, что разброс средних месячных значений экстремальных температур поверхности почвы невелик и выборка однородна.