МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра геофизики

Студента 2 курса 261 группы

(направление 05.04.01 геология)

«Обоснование подсчётных параметров коллекторов готеривского яруса методами ГИС (На Сурьеганском месторождении в Западной Сибири)»

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

` 1	,	
геологического ф-та		
Воропая Дмитрия Олеговича		
Научный руководитель		
К. гм.н., доцент		М.В. Калинникова
	подпись, дата	
Зав. кафедрой		
К. г м.н., доцент		Е.Н. Волкова
	полнист пата	

Введение. Основы геологической интерпретации данных промысловой геофизики с целью получения подсчетных параметров заложены в нашей стране в 30—40-х годах В. Н. Дахновым. В последующем под его руководством на кафедре промысловой геофизики МИНХ и ГП в 50—00-х годах В. М. Добрыниным. В. И. Кобрановой, В. В. Ларионовым, М. Г. Латышовой и другими были разработаны многочисленные способы определения подсчетных параметров по данным электро- и радиометрии. В настоящее время геофизические методы изучения коллекторских свойств и нефтегазонасыщения горных пород являются одними из основных при подсчете запасов нефти и газа.

Актуальность работы. Вопрос повышения точности определения подсчетных параметров коллекторов является актуальной задачей на всех этапах жизни нефтегазового месторождения: и во время поисково-оценочного этапа, в виду необходимости установления промышленного характера залежи и её перспективности, и на разведочном этапе для принятия обоснованного комплекса мероприятий по введению месторождения в эксплуатацию. Задача площадного определения фильтрационно-емкостных свойств и геометрических параметров объекта, знание которых необходимо для проведения точного подсчета запасов, как правило, ложится на комплекс косвенных методов (важнейшими из которых, здесь являются ГИС) совмещённых с прямыми исследованиями (бурового шлама и керна).

Цель работы. Рассмотреть методики определения подсчетных параметров, применяемые в современной промысловой геофизике, и выявить наиболее эффективные для геолого-геофизических условий нефтегазовых месторождений Западной Сибири (ХМАО).

Объект исследования. Исследуется терригенный пласт AC10/2 нижнемелового возраста (низы готеривского яруса) на территории Сурьеганского месторождения (Западная Сибирь).

Основные задачи работы:

- изучить геолого-геофизическую характеристику исследуемого

месторождения, охарактеризовать объект исследования (пласт AC10/2);

- охарактеризовать комплекс методов ГИС, проводимый на скважинах Сурьеганского месторождения;
- изучить методики, применяемые для определения подсчетных параметров, а именно коэффициента пористости (K_{Π}), нефтегазонасыщенности ($K_{H\Gamma}$) через коэффициент водонасыщения (K_B), и перейти к получению этих параметров на примере скважин №56, 57, 61, 64, 65, 85 Сурьеганского месторождения;
- провести выбор методики, с помощью которой можно наиболее эффективно решить задачу определения подсчетных параметров для геологогеофизических условий исследуемого месторождения;
- описать алгоритм определения удельного электрического сопротивления пластовой воды (ρ_в), в случае отсутствия данных лабораторных исследований;
- провести расчёты подсчетных параметров по исследуемым скважинам Сурьеганского месторождения;
- обосновать наиболее эффективную методику определения подсчетных параметров в геолого-геофизических условиях Западной Сибири.

Научная новизна и значимость работы заключается в возможности применения результатов по выявлению наиболее эффективных, в условиях исследуемого литолого-стратиграфического интервала в Западной Сибири, методик определения подсчетных параметров, в особенности в случаях отсутствия индивидуальных зависимостей, дефицита материалов прямых исследований свойств пород-коллекторов.

Основное содержание работы. В разделе 1 «Геолого-геофизическая характеристика территории» описано расположение территории исследования, eë литолого-стратиграфическая характеристика И тектоническое строение, дана характеристика нефтегазоносности исследуемого пласта.

В подразделе 1.1 «Общее положение» дана привязка административного положения территории. Сурьеганского месторождение можно привязать к

Сургутскому и Белоярскому районам Ханты-Мансийского автономного округа - Югры Тюменской области, северная часть участка месторождения расположена в Белоярском, а южная – в Сургутском районе.

подразделе 1.2 «Литолого-стратиграфическая характеристика разреза», показано, что геологический разрез Сурьеганского месторождения представлен породами трех структурно-тектонических комплексов: палеозойского метаморфизованного складчатого фундамента, переходного тафрогенного комплекса триаса и мезозойско-кайнозойского платформенного чехла. Образования осадочного чехла включают в себя отложения юрской, меловой, палеогеновой и четвертичной систем. Отложения меловой системы представлены двумя отделами - нижним и верхним. Нижнемеловые отложения являются основным объектом поисков нефти и газа, имеют берриас-альбский возраст и представлены осадками ахской, черкашинской, алымской, викуловской и ханты-мансийской свит. Верхнемеловые отложения имеют сеноман-маастрихтский возраст и представлены уватской, кузнецовской, березовской и ганькинской свитами. Отложения черкашинской свиты согласно залегают на породах ахской свиты и представлены неравномерным переслаиванием песчаников, алевролитов и аргиллитоподобных глин. Свита делится быстринской пачкой глин на две подсвиты: нижнюю AC10-AC7, и верхнюю - пласты АС6-АС4. В пределах рассматриваемого месторождения выявлена нефтеносность пластов АС10/2, АС10/2-1. Возраст свиты готеривбарремский. Толщина-до 310 м.

В подразделе 1.3 «Тектоника» в геологическом разрезе Западно-Сибирской платформы выделяются два комплекса отложений: доюрский и мезозойско-кайнозойский. Доюрский комплекс состоит из двух структурнотектонических этажей: складчатого консолидированного фундамента и промежуточного структурного этажа. Согласно «Тектонической карты центральной части Западно-Сибирской плиты» (под ред. В.И. Шпильмана, 1998 г.), Сурьеганское месторождение расположено на северо-восточном замыкании Фроловской мегавпадины, в зоне ее сочленения с Помутской мегатеррасой.

В подразделе «Особенности нефтегазоносности» описано расположение исследуемых скважин (№56, 57, 61, 64, 65, 85), тип залежи, приуроченной к пласту АС10/2. Нефтеносность в рамках исследуемого пласта АС10/2 установлена для в нижнемеловых отложениях черкашинской свиты (низы готеривского яруса, К1g). Выявлено три залежи нефти.

Данные ГИС имеются по скважинам, приуроченным к залежи 2. Залежь 2 - структурно-литологическая, размеры - 10.8*4.8 км. высота -19 м. Площадь залежи 39.788 км². ВНК наклонный от -2539.2 до -2552.3 м. В границах нефтеносности залежь вскрыта тремя разведочными и 30 эксплуатационными скважинами (в том числе тремя горизонтальными скважинами). Эффективные нефтенасыщенные толщины изменяются от 0.6 до 8.4 м. при среднем значении 3.9 м.

Раздел 2 «Методика исследования» включает в себя описание комплекса ГИС на исследуемых скважинах Сурьеганского месторождения и подразделы, посвященные определению подсчетных параметров. На исследуемых скважинах Сурьеганского месторождения выполнен следующих комплекс методов ГИС:

- А) Методы электрического каротажа
- Боковой каротаж (БК)
- Индукционный каротаж (ИК)
- Каротаж самопроизвольной поляризации (ПС)
- Высокочастотное индукционное каротажное зондирование (ВИКИЗ)
- Б) Методы радиоактивного каротажа
- Гамма каротаж (ГК)
- Нейтрон-нейтронный каротаж на тепловых нейтронах (ННК-т)
- Гамма-гамма плотностной каротаж (ограниченно)

В подразделе 2.1 «Методика определения подсчетных параметров» подчёркнуто, что в данной квалификационной работе рассматриваются подсчетные параметры для объемного метода подсчета запасов. Объемный

метод подсчета запасов широко применяется при наличии данных о емкостных свойствах коллекторов и их пространственных характеристиках. Сущность объемного метода заключается в определении массы нефти или объема свободного газа в насыщенных ими объёмах пустотного пространства пород-коллекторов, слагающих залежи нефти и газа или их части. По данным промысловой геофизики могут быть определены следующие подсчетные параметры: 1) эффективная мощность (hэф); 2) положение водонефтяного (ВНК), газоводяного (ГВК), газонефтяного (ГНК) и текущих контактов на различных этапах разработки месторождения; 3) коэффициент пористости для большинства продуктивных объектов (за исключением отдельных типов сложных коллекторов); 4) коэффициент нефтегазонасыщения для всех коллекторов, кроме трещинно-кавернозных.

Подраздел 2.1 «Определение эффективной мощности $h_{эф}$ » посвящён оценке эффективной мощности продуктивных коллекторов, что включает в себя следующие операции: 1) выделить коллектор; 2) установить характер насыщения коллектора; 3) найти эффективную мощность пластов-коллекторов. Величина $h_{эф}$ в однородном пласте-коллекторе определяется как мощность этого пласта, границы которого устанавливаются по диаграммам геофизических методов.

В связи с последним, подраздел 2.2 1 «Выделение коллекторов» включает в себя описание использованных групп признаков для выделения коллекторов. Первая группа объединяет прямые качественные признаки, основанные па более высокой проницаемости коллектора по сравнению с вмещающими породами и на проникновении в коллектор фильтрата глинистого раствора.

Вторая группа включает косвенные количественные признаки коллектора, основанные на отличии коллектора от вмещающих пород по пористости и глинистости; это позволяет выделить пласты-коллекторы в интервалах с повышенной пористостью и пониженной глинистостью по диаграммам соответствующих геофизических методов. К косвенным в данном

случае относится критерий выделения коллектора по типичному значению коэффициента пористости K_n , составляющему 15,5% и коэффициента проницаемости более $0.8*10^{-3}$ мкм², найденным по данным керновых исследований нижнемеловых готеривских отложений. В данной работе рассмотрены лишь те признаки, для которых имеется геофизическое обоснование методами ГИС, представленными на каротажных материалах.

В подраздел 2.3 «Определение коэффициента пористости (K_n)» даны теоретические основы определения пористости пород. Комплекс методов ГИС для имеющегося каротажного материала и наличие петрофизических связей для данного месторождения по радиоактивным методам, обуславливают определение K_n одним из следующих способов:

- 1) По кривой зависимости двойного разностного параметра $\Delta I \gamma = f(K_{\pi})$ метода ГК для данного месторождения
- 2) По одной из общепринятых зависимостей относительного параметра $I_{n,r}=f(K_{\pi})$ нейтрон-нейтронного каротажа по тепловым нейтронам (ННК-т).

В подразделе 2.3.1 «Определение K_{Π} по методу ΓK », повествуется о физических предпосылках определения K_{Π} по методу ΓK , основанная на связи K_{Π} с интенсивностью ΓK (или двойным разностным параметром $\Delta I \gamma$) и установленной на Сурьеганском месторождении петрофизической зависимости K_{Π} = $f(\Delta I \gamma)$, показанной через выражение 1 как:

$$K_{\pi}^{\text{fk}} = -13,1 \Delta I \gamma + 23 \tag{1}$$

В подразделе 2.3.2 «Определение K_{Π} по методу ННК-т» даны физикотеоретические основы применения метода ННК-т для задач определения пористости. Задача определения пористости по интенсивности I^{n-r} показаний метода ННК-т опирается на связь эквивалентной влажности породы ω (также называемой нейтронной пористостью) с I^{n-r} (или относительной амплитуды ΔI^{n-r} , согласно выражению 2) с учетом влияния связанной воды глинистой составляющей коллектора.

Относительная амплитуда определена из значений интенсивности I^{n-r} по двум пластам (пласт глин и плотных пород) с известными значениями эквивалентной влажности или нейтронной пористости Кп,n. Тогда Δ Inn вычисляется по формуле 2, как:

$$\Delta I^{n-T} = I^{n-T} - I_1^{n-T} / I_2^{n-T} - I_1^{n-T}, \qquad (2)$$

где I_2^{n-T} - I_1^{n-T} — опорная амплитуда, равная разности показаний кривой нейтронного метода. Определение пористости проводится по зависимости $K_n(\Delta I^{n-T})$, представленной на рисунке 1.

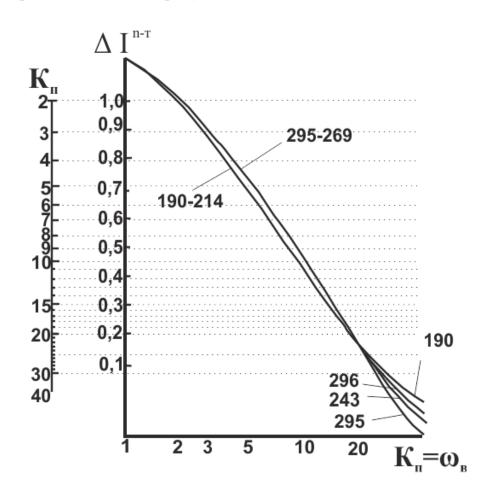


Рисунок 1 — Зависимость коэффициента пористости от относительной амплитуды для метода ННК-т

В подразделе 2.4 «Определение коэффициента нефтегазонасыщения $K_{\rm HF}$ » изучены методики определения $K_{\rm HF}$ (как 1- $K_{\rm B}$), а именнно: 1 — по зависимости коэффициента водонасыщения от параметра насыщения $P_{\rm H}(K_{\rm B})$, 2 — по уравнению Арчи-Дахнова, 3 - по уравнению Симанду.

Подраздел «2.4.1 Определение сопротивления пластовой воды $\rho_{\text{в}}$ »

включает в себя методическую часть по определению $\rho_{\text{в}}$.

В отсутствии данных анализов образцов воды и заданного химического состава вод, сопротивление пластовой воды ρ_B определялось по величине амплитуды аномалий потенциалов собственной поляризации графическим расчетом с использованием номограммы. Для расчета ρ_B таким способом используется уравнение 2:

$$\Delta$$
Uсп, прив = Δ U сп / vсп bc = Ксп,_t lg ρ_{ϕ}/ρ_{B} , (2) где bc — коэффициент приведения зависимости Δ Uсп= $f(lg\rho_{\phi}/\rho_{B})$ к линейному вилу. Поправка усп определяется по специальной палетке усп= $f(h/d)$, гле h/d -

виду. Поправка vcп определяется по специальной палетке vcn=f (h/d), где h/d -

мощность пласта к диаметру скважины.

Неизвестное сопротивление фильтра бурового раствора ρ_{ϕ} возможно определить по палетке для определения удельного сопротивления фильтрата бурового раствора в зависимости от температуры.

Неизвестное значение коэффициента Ксп,t, равное при нормальных условиях 70 мВ, определяется приведением к температуре пласта по номограмме. Получив величину $\Delta U_{\text{сп, прив}}$, возможно применить номограмму для определения удельного сопротивления пластовой воды ρ в.

Раздел 3 «Результаты исследования» содержит результаты определений подсчетных параметров, обоснования применения и выводы по применению методик подсчета K_{Π} и $K_{H\Gamma}$, проделанную работу по определению ρ_{B} .

В подразделе 3.1 «Результаты выделения коллекторов и получение эффективной мощности $h_{9\varphi}$ » конкретизированы результаты определения эффективной мощности $h_{9\varphi}$.

В подразделе 3.2 «Определение K_{Π} и $K_{H\Gamma}$ » показаны результаты расчёта K_{Π} и $K_{H\Gamma}$. Коэффициент пористости рассчитан по методике, описанной в разделе 2.3.1 и 2.3.2. В первом случае, пористость определена на основании зависимости 4 (K_{Π} =f(Δ I γ)), по данным метода Γ K, во втором — на основании зависимости K_{Π} =f(Δ I $^{\Pi-1}$), по данным метода HHK-т. Для определения принятого значения K_{Π} , проводилось сравнение полученных значений K_{Π} по Γ K и HHK-т со значением (K_{Π} =15,5%), найденным по данным исследований

керна нижнемеловых готеривских отложений пласта AC10/2 на Сурьеганском месторождении. Проведено определение средневзвешенных значений пористости $K_{\text{п.ср}}$ по скважинам. Полученные значения $K_{\text{п.ср}}$, показывают большую сходимость с априорным значением при определении $K_{\text{п}}$ по зависимости, основанной на данных ΓK , что является обоснованием её применения в условиях Сурьеганского месторождения, что отображено в таблице 1.

Таблица 1 — Средневзвешенные значения коэффициента пористости по разным методам

№ скважины	Кп ГК, средневзв., %	Кп ННКт, средневзв., %
56	18,76	18,08
57	16,03	17,96
61	17,71	17,13
64	17,19	25,8
65	17,38	21,22
85	16,96	15,88

Для определения $K_{H\Gamma}$, по методикам, представленным в разделе 2.4, требовалось определение удельного сопротивления пластовой воды ρ_{B} . Автором на основании литературных источников была выбрана методика с использованием показаний метода ΠC , описанная в разделе 2.4.1.

Для того, чтобы оценить возможность применения какой-либо из общепринятых методик определения $K_{\rm HF}$ или $K_{\rm B}$, освещенных в разделе 2.4 (1 - по зависимости от параметра насыщения $P_{\rm H} = f(K_{\rm B})$, 2 - уравнению Арчи-Дахнова, 3 - уравнению Симанду), проведено сравнение полученных результатов их применения с индивидуальной зависимостью, основанной на связи 3:

$$\rho_{\Pi} = 197.54 \, W_{\rm B}^{-1.246}, \tag{3}$$

где $W_{\scriptscriptstyle B}$ = $K_{\scriptscriptstyle \Pi}$ $K_{\scriptscriptstyle B}$ – объемная водонасыщенность. Данная зависимость получена на

статистически значимом объеме материала и применяется для определения $K_{\scriptscriptstyle B}$ в регионе исследования.

После получения значений $K_{H\Gamma}$ (K_B) проведено сравнение эффективности применения рассмотренных методик, путём сравнения с результатами, полученными по индивидуальной зависимости.

Определение коэффициента водонасыщения по предложенным методикам показало, что наиболее точные результаты получены по методике Арчи-Дахнова.

Применяя Уравнение Арчи-Дахнова, из выражения, основываясь на полученных значениях удельного сопротивления пластовых вод ρ_B , коэффициента пористости $K_{\rm II}$, удельного электрического сопротивления неизмененной части пласта $\rho_{\rm II}$ проведено определение коэффициента водонасыщения $K_{\rm B}$ по всем исследуемым интервалам скважин №56,57,61,64,65,85.

На основании результатов определения $K_{\rm H\Gamma}$ можно сделать вывод об удовлетворительной сходимости результатов получения $K_{\rm H\Gamma}$ через $K_{\rm B}$ по методике Арчи-Дахнова с данными о нефтегазонасыщенности, полученными на основании индивидуальной зависимости по месторождению, представленной в выражении 3.

Заключение. В данной работе проведен выбор и обоснование оптимальной методики определения подсчетных параметров в геологогеофизических условиях Западной Сибири для коллекторов нижнемеловых готеривских отложений. В работе рассматривались подсчетные параметры для объемного метода подсчета запасов. Величина $h_{3\varphi}$ в однородном пластеколлекторе определяется как мощность этого пласта, границы которого устанавливаются по диаграммам геофизических методов на основании прямых качественных и количественных критериях (отталкиваясь от среднего значения коэффициента пористости K_{π} , (15,5%) по коллекторам и граничного значения коэффициента проницаемости (более $0.8*10^{-3}$ мкм²)). Показана возможность определения $K_{\pi}(K_{\pi})$ следующими способами: используя

общепринятую зависимость $P_H(K_B)$, уравнение Арчи-Дахнова, либо уравнение Симанду. Для определения K_n использовались как данные метода ГК, так и ННК-т. Полученные значения $K_{\text{п.ср}}$, приведенные в таблице 1, показывают наилучшую сходимость со значением K_{π} по керну исследуемого пласта Сурьеганского месторождения в случае применения зависимости, основанной на данных ГК. Для определения коэффициента нефтегазонасыщения К_{нг}, рассмотрены три методики определения коэффициента водонасыщения Кв: 1 по зависимости от параметра насыщения $P_H(K_B)$, 2 - уравнению Арчи-Дахнова, 3 - уравнению Симанду. Поскольку все рассматриваемые методики определения коэффициента водонасыщения К_в все требовали данные об удельном сопротивлении пластовых вод $\rho_{\rm B}$, которые отсутствуют в исследуемых скважинах, автором, по литературным источникам, был найден способ определения $\rho_{\rm B}$, по данным ПС и специально составленным номограммам. Произведен расчет $\rho_{\scriptscriptstyle B}$ исследуемым ПО скважинам Сурьеганского месторождения. В соответствии с задачей исследования по выбору эффективной методики подсчета К_в для геолого-геофизических условий Сурьеганского месторождения, проводилось сравнение индивидуальной для исследуемого месторождения зависимостью ρ_{π} (W_B), полученной на значимом объеме статистического материала и используемой в практике промыслово-геофизических работ. В результате доказано, что использование методики, основанной на уравнении Арчи-Дахнова для определения К_{в.} в условиях Западной Сибири для готеривских отложений дало наилучшую сходимость. Эти выводы подтверждается и результатами определения К_{нг}, таким образом является возможным рекомендовать использование данной методики определения К_в в условиях Западной Сибири для готеривских отложений в случае отсутствия индивидуальной зависимости по месторождению.