Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра физики твердого тела

ИЗМЕНЕНИЕ ТИПА РЕЗОНАНСНОГО ОТРАЖЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СВЧ-ДИАПАЗОНА В СТРУКТУРАХ НАНОМЕТРОВАЯ МЕТАЛЛИЧЕСКАЯ ПЛЕНКА— ДИЭЛЕКТРИК

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса по направлению 11.03.04 «Электроника и наноэлектроника» факультета нано- и биомедицинских технологий

Приемышева Аркадия Дмитриевича

Научные руководители

профессор, д.фм.н.		Ал.В. Скрипаль
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
ст.преподователь, к.фм.н.		Е.В. Латышева
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
И.О. зав. кафедрой		
профессор, д.фм.н.		Ал.В. Скрипаль
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия

Введение. Эффективность изготовления существующих и успешное изобретение новых приборов твердотельной микро- и наноэлектроники во зависит от уровня развития технологии изготовления слоев различных материалов толщиной от нескольких нанометров до десятков Современные микрометров. методы молекулярно-лучевой эпитаксии позволяют создавать совершенные слои различных материалов толщиной в несколько нанометров и, в частности, металлические нанослои, нанесенные на изолирующие подложки. Применение слоистых структур на основе СВЧнанометровых металлических пленок В микро-, акусто-, оптоэлектронике определяется способностью отражать часто электромагнитное излучение на различных частотах.

При измерениях чаще всего применяются контактные методы, т. е. параметры полупроводниковых И диэлектрических материалов И металлических пленок измеряют на постоянном или низкочастотном токе. Измерения такими методами производятся при наличии контакта зонда с образцом. Зачастую это приводит к разрушению исследуемого материала. При использовании таких методов могут возникать характерные для них нежелательные явления, например, связанная с контактом инжекция носителей заряда В материал, возникновение контактной разности термоЭДС, потенциалов, которые трудноустранимым приводят К погрешностям. С помощью зондовых методов затруднительно также исследовать образцы малой площади с произвольной геометрией.

Достоинством бесконтактных методов, к которым, помимо прочих, относятся СВЧ-методы, является возможность проводить измерения, не разрушая материал и не изменяя его свойства.

Следует отметить, что СВЧ-методы являются наиболее предпочтительными при использовании исследуемых материалов и структур в приборах полупроводниковой СВЧ-электроники.

Представляет интерес реализация ситуаций, когда незначительные изменения параметров металлических нанослоев существенным образом влияют на характеристики взаимодействия электромагнитного излучения со слоистыми структурами, содержащими нанометровые металлические слои. Такая ситуация реализуется, в частности, если выполняются условия резонанса для электромагнитной волны, распространяющейся в слоистой структуре.

В настоящей работе исследовались особенности взаимодействия электромагнитного излучения сверхвысокочастного диапазона со слоистыми структурами на основе тонких нанометровых металлических пленок и диэлектрических материалов в волноведущей системе, устанавливалась возможность расширения диапазона и повышения достоверности измерений параметров слоистых структур на основе тонких нанометровых металлических пленок диэлектрических материалов ПО спектрам взаимодействующего с отражения прохождения НИМИ излучения сверхвысокочастного диапазона и повышения чувствительности СВЧметодов измерения. При этом высокая точность измерений достигалась лишь при условии, что известно теоретическое описание спектров отражения и прохождения, хорошо согласующееся с экспериментом, и эти спектры характеризуются высокой чувствительностью К изменению величин искомых параметров измеряемых структур.

С учетом вышесказанного была сформулирована **цель бакалаврской работы:** исследование особенностей взаимодействия электромагнитного излучения сверхвысокочастного диапазона в структурах нанометровая металлическая пленка—диэлектрик, в частности изменение типа резонансного отражения.

Бакалаврская работа содержит 4 главы:

- 1. ВОЛНОВОДНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ И МЕТАЛЛОДИЭЛЕКТРИЧЕСКИХ СТРУКТУР НА СВЧ
 - 1.1 Узлы, входящие в измерительные СВЧ схемы
- 2. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ ВОЛНОВОДНОГО МЕТОДА ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК СЛОИСТЫХ СТРУКТУР ПО СПЕКТРАМ ОТРАЖЕНИЯ И ПРОХОЖДЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
- 2.1 Математическая модель взаимодействия электромагнитного излучения СВЧ-диапазона с одномерными волноводными структурами.
 - 2.2 Основа математического моделирования. Метод конечных элементов.
- 3. РЕЗУЛЬТАТЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ВЗАИМОДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СВЧ-ДИАПАЗОНА СО СТРУКТУРОЙ МЕТАЛЛ ДИЭЛЕКТРИК.
- 3.1 Результаты компьютерного моделирования спектров отражения и прохождения
- 4. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ ВЗАИМОДЕЙСТВИЯ СВЧ-ИЗЛУЧЕНИЯ СО СТРУКТУРОЙ МЕТАЛЛ ДИЭЛЕКТРИК.
 - 1. ВОЛНОВОДНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ И МЕТАЛЛОДИЭЛЕКТРИЧЕСКИХ СТРУКТУР НА СВЧ

Наиболее распространенными методами являются волноводные и резонаторные. При использовании волноводных методов рассматривается взаимодействие СВЧ-волны, распространяющейся волноводе, помещенным в него образцом, и измеряются интенсивность прошедшей и отраженной волн. При измерениях резонансными методами настраивается в резонанс изменением размеров электродинамической системы или частоты генератора. Эти методы основаны на поглощении электромагнитной энергии свободными носителями заряда и изменении эквивалентных размеров резонатора при помещении в него полупроводника.

Обычно волноводные методы основаны на измерении комплексного коэффициента отражения $\mathbf{\textit{R}}$ или прохождения $\mathbf{\textit{D}}$ отрезка волновода с

образцом и определении электрофизических параметров полупроводника по формулам, связывающим их с \mathbf{R} и \mathbf{D} .

$$R = \frac{\sqrt{2 - \gamma^2} \sinh \gamma l}{\sqrt{2 + \gamma_0^2} \sinh \gamma l + 2\gamma \gamma_0 \cosh \gamma l}$$

$$D = \frac{2\gamma\gamma_0}{\sqrt{(x^2 + \gamma_0)^2} sh \gamma l + 2\gamma\gamma_0 ch \gamma l}$$

где γ и γ_0 — постоянные распространения электромагнитной волны в заполненном и пустом волноводе.

Анализируя существующие волноводные методы измерения электрофизических параметров полупроводниковых и диэлектрических структур можно сделать вывод, что разработанные к настоящему времени методы измерений характеризуются значительным многообразием и обеспечивают возможность определения ряда параметров металлических пленок, полупроводниковых и диэлектрических материалов и структур.

1.1 Узлы, входящие в измерительные СВЧ схемы

Для плавного изменения вносимого затухания от минимального до устройства, максимального значений используются называемые переменными аттенюаторами. В измерительной технике обычно аттенюаторы поглощающего Поглощающий используются типа. волноводный аттенюатор представляет собой отрезок волновода, в Еплоскости волны основного типа которого расположена диэлектрическая пластина с нанесенным на нее поглощающим слоем, выполненная с возможностью перемещения в направлении от узких стенок к центру и наоборот.

Для полного поглощения без отражения и излучения в окружающую среду энергии распространяющейся в волноводе волны используются согласованные нагрузки. Волноводные согласованные нагрузки

конструктивно представляют собой отрезок волновода, внутри которого помещена поглощающая вставка, имеющая для уменьшения отражения форму клина.

- 2. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ ВОЛНОВОДНОГО МЕТОДА ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК СЛОИСТЫХ СТРУКТУР ПО СПЕКТРАМ ОТРАЖЕНИЯ И ПРОХОЖДЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
 - 2.1 Математическая модель взаимодействия электромагнитного излучения СВЧ-диапазона с одномерными волноводными структурами.

Для теоретического описания взаимодействия электромагнитного излучения с периодическими структурами подобного рода применяются матричные методы и численные методы электродинамического моделирования.

Для расчета коэффициентов отражения и пропускания ЭМВ при её нормальном падении на многослойную структуру, в которой плоскости слоёв расположены перпендикулярно направлению распространения излучения и полностью заполняющие волновод по поперечному сечению, можно воспользоваться матрицей передачи волны между областями с различными значениями постоянной распространения электромагнитной волны γ_i и γ_{i+1} .

Коэффициенты A_{N+1} и B_0 , определяющие амплитуды волны, прошедшей через многослойную структуру, и волны, отраженной от нее, связаны с коэффициентом AQ, определяющим амплитуду падающей волны, следующим соотношением:

$$\begin{pmatrix} A_{N+1} \\ 0 \end{pmatrix} = \mathbf{T}_N \cdot \begin{pmatrix} A_0 \\ B_0 \end{pmatrix}, \tag{2.1}$$

где:

$$\mathbf{T}_{N} = \begin{pmatrix} \mathbf{T}_{N} & \mathbf{I}_{1} & \mathbf{T}_{N} & \mathbf{I}_{2} \\ \mathbf{T}_{N} & \mathbf{I}_{1} & \mathbf{T}_{N} & \mathbf{I}_{2} \end{pmatrix} = \prod_{j=N}^{0} \mathbf{T}_{j, \mathbf{G}_{j+1}} = \mathbf{T}(z_{N,N+1}) \cdot \mathbf{T}(z_{N-1,N}) \dots \mathbf{T}(z_{1,2}) \cdot \mathbf{T}(z_{0,1})$$
(2.2)

матрица передачи слоистой структуры, состоящей из N слоев.

Коэффициенты отражения — и прохождения — электромагнитной волны, взаимодействующей со структурой, определяются через элементы матрицы передачи T_N с помощью соотношения (2.1), получим:

$$R = -\frac{\mathbf{T}_N \mathbf{L}_1^{-}}{\mathbf{T}_N \mathbf{L}_2^{-}},\tag{2.3}$$

$$D = \frac{\mathbf{T}_{N} \left[1 - \mathbf{T}_{N} \right] \left[2 - \mathbf{T}_{N}$$

Полученные соотношения могут быть использованы для нахождения значений коэффициентов отражения и прохождения при взаимодействии электромагнитной волны со слоями диэлектрика и с многослойными структурами.

Таким образом, показана теоретическая модель, позволяющая рассчитывать коэффициенты отражения и прохождения СВЧ-излучения для многослойных структур, содержащих тонкие нанометровые металлические слои.

2.2 Основа математического моделирования. Метод конечных элементов.

Для математического моделирования спектров отражения и прохождения СВЧ-излучения и оптимизации геометрических и электрофизических параметров его слоев использовалось программное обеспечение ANSYS HFSS, реализующее метод конечных элементов для решения задач электродинамики.

- 3. РЕЗУЛЬТАТЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ВЗАИМОДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СВЧ-ДИАПАЗОНА СО СТРУКТУРОЙ МЕТАЛЛ - ДИЭЛЕКТРИК.
- 3.1 Результаты компьютерного моделирования спектров отражения и прохождения

В настоящей работе исследовалась структура металлическая пленка фторопласта толщиной диэлектрик, состоящая ИЗ слоя 20.8 мм диэлектрической проницаемостью $\varepsilon=2$, слоя поликора толщиной 5 мм с диэлектрической проницаемостью $\varepsilon = 9.6$ и слоя металлической пленки толщиной 260 нм, нанесенного полосками шириной 1 мм, в диапазоне 8-12 ГГц. Количество полосок варьировалось от 0 до 13. Слои полностью заполняли поперечное сечение волновода. Геометрические размеры и электрофизические параметры слоёв были подобраны таким образом, чтобы образующиеся запрещенные 30НЫ перекрывали значительную часть используемого частотного диапазона 8-12 ГГц.

Рассчитанные методом конечных элементов частотные зависимости квадратов модулей коэффициента отражения $\left|R\right|^2$ электромагнитной волны от исследуемой структуры носят ярко выраженный немонотонный характер. Имеется область определяется резонансного отражения, которая параметрами слоя диэлектрика, количеством И толщиной полос металлического слоя.

В отсутствии металлической пленки пик коэффициента отражения находится на частоте 10.3 ГГц. При внесении в данную структура металлической пленки в количестве одного столбика, коэффициент отражения смещается в сторону низких частот. При увеличении количества столбиков, коэффициент отражения смещается в высокочастотную область. Также при увеличении количества столбиков металлической пленки, пик поднимается по шкале дБ.

Добротность резонатора, образованного структурой нанометровая металлическая пленка—диэлектрик, в СВЧ-диапазоне немонотонным образом зависит от толщины и электропроводности нанометрового металлического слоя..

Полученные расчетные данные, свидетельствуют о возможности использования спектров отражения и прохождения при возникновении полуволнового резонанса в СВЧ-диапазоне для измерения параметров нанометровых металлических слоев, нанесенных на диэлектрическую подложку полосками с известной шириной.

4. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ ВЗАИМОДЕЙСТВИЯ СВЧ-ИЗЛУЧЕНИЯ СО СТРУКТУРОЙ МЕТАЛЛ - ДИЭЛЕКТРИК.

В настоящей работе было проведено экспериментальное исследование взаимодействия СВЧ- излучения со структурой металл - диэлектрик. Экспериментально исследовалась структура, созданная в соответствии с описанной моделью в пункте 3.1. Измерение амплитудно-частотных характеристик коэффициентов отражения и пропускания исследуемого образца в трехсантиметровом диапазоне длин волн проводилось с помощью векторного анализатора цепей Agilent PNA-L Network Analyzer N5242A.

В ходе экспериментальных исследований в диапазоне частот 8–12 ГГц измерен спектр отражения электромагнитной волны, взаимодействующей с изображенной на рис.3 структурой. Измеряемая структура помещалась в прямоугольный волновод и полностью заполняла его по поперечному сечению.

В соответствии с пунктами 3 и 4, схожие показатели изменения резонанса в теоретической и экспериментальной модели, образованной структурой нанометровая металлическая пленка-диэлектрик, в СВЧ-

диапазоне, удалось достичь при толщине металлической пленки равной 260 нм.

В ходе настоящей бакалаврской работы было проведено исследование особенностей взаимодействия электромагнитного излучения сверхвысокочастного диапазона в структурах нанометровая металлическая пленка—диэлектрик:

- 1. многослойной Построена структуры, содержащей модель металлические нанометровые слои, нанесенные В виде полос на диэлектрическую подложку, для расчета спектров отражения и прохождения СВЧ-излучения с использованием программного обеспечения ANSYSHFSS.
- 2. Получены расчетные и экспериментальные данные, свидетельствующие о возможности использования спектров отражения и прохождения, при возникновении полуволнового резонанса, для измерения параметров нанометровых металлических слоев, нанесенных на диэлектрическую подложку полосками.
- 3. Показано, что с ростом толщины металлической пленки в слоистой структуре диэлектрик-металл изменяется тип резонанса при отражении электромагнитного излучения СВЧ-диапазона, взаимодействующего со слоистой структурой;