МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО» (СГУ)

Кафедра физики полупроводников

Параметрическое взаимодействие волн пространственного заряда в тонкопленочных структурах на основе n-GaAs и n-InP

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 412 группы

направления 11.03.04 «Электроника и наноэлектроника»

факультета нано - и биомедицинских технологий

Альмикеева Артема Евгеньевича

Научный руководитель: <u>доцент, к.ф.-м.н., доцент</u> должность, уч. степень, уч. звание

подпись, дата

<u>С.А. Сергеев</u> инициалы, фамилия

Заведующий кафедрой: <u>д.ф.-м.н., профессор</u> должность, уч. степень, уч. звание

А.И. Михайлов инициалы, фамилия

подпись, дата

Саратов 2019

введение.

Общая характеристика темы.

Актуальность темы. В настоящее время большой интерес представляет создание устройств основе тонкопленочных на полупроводниковых структур (ТПС) с отрицательной дифференциальной проводимостью (ОДП), имеющей место в таких полупроводниках, как п-GaAs, n-InP и n-GaN. Это связано с особенностями распространения в них ВПЗ в условиях разогрева электронов в сильных электрических полях. Подобные структуры могут быть использованы для создания интегральных устройств обработки сигналов вплоть до миллиметрового диапазона длин волн, выполняющих такие радиотехнические функции, как усиление, генерация, задержка и изменение фазы сигнала, управляемая фильтрация, преобразование и синтез частот.

собственных Распространение волн В тонкопленочных полупроводниковых структурах с ОДП к настоящему времени достаточно хорошо исследовано [1]. Известна общая теория [2], проведен анализ при равной граничной частоте [3,4] частоте накачки, параметрического взаимодействия волн пространственного заряда (ВПЗ) в ТПС с ОДП. В то же время влияние параметров полупроводниковой структуры и сигналов, подаваемых на нее, изучено недостаточно.

Цель и задачи бакалаврской работы

Целью бакалаврской работы является исследование влияния частоты и мощности низкочастотной накачки на характеристики распространения и взаимодействия ВПЗ в ТПС на основе n-GaAs и n-InP на основе общей теории параметрического взаимодействия ВПЗ в приближении жесткой границы потока носителей заряда.

Для достижения поставленной цели решались следующие задачи: – Проведение литературного обзора по соответствующей тематике;

Проведение сравнительного анализа перспектив применения n-InP и n-GaN
в устройствах на волнах пространственного заряда.

– Анализ влияния параметров накачки на параметрическое взаимодействие волн пространственного заряда в тонкопленочных структурах на основе n-GaAs, n-InP.

Структура и объем работы

Кроме ВВЕДЕНИЯ, ЗАКЛЮЧЕНИЯ, СПИСКА ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ПРИЛОЖЕНИЯ работа включает 3 основных раздела:

1 Теоретический обзор.

2 Теоретический анализ параметрического взаимодействия в полупроводниках n-GaAs и n-InP.

3 Результаты теоретического исследования волн пространственного заряда в полупроводниках n-GaAs и n-InP.

Общий объем работы составляет 54 страницы и включает 9 рисунков.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении описана актуальность темы исследования, раскрыта новизна работы, а также сформированы цель и задачи исследования.

В первой главе проводится анализ литературы по теме исследований, рассмотрена общая теория параметрического взаимодействия ВПЗ в ТПС с ОДП и проведен вывод основных уравнений для расчета. На рисунке 1 показана схема ТПС с сильной асимметрией.

Рисунок 1 – Схема ТПС с сильной асимметрией

Проведен литературный обзор параметров и характеристик соединений А₃В₅ для выяснения перспектив их использования в устройствах на ВПЗ.

Некоторые	наиболее	важные	параметры	И	характеристики	соединений
представлен	ны в таблиц	(e 1.				

Характеристика	Арсенид галлия	Фосфил инлия InP	Нитрид галлия
полупроводника	GaAs		GaN
$\Delta \mathrm{E_{g}},$ $\mathrm{3B}$	1,42÷1,46	1,34÷1,432	3,22÷3,302
$E_{\text{пор}}, \kappa \text{B/cm}$	3,2÷3,5	10÷10,5	80÷150
$ au_M, c$	6.10-12	3.10-12	
$ au_{\Delta}, c$	1,48.10-12	0,75·10 ⁻¹²	
$v_{\rm max}/v_{\rm min}$	2÷2,4	3÷4	2,1÷2,2
$D \alpha x^2/\alpha$	$142 \div 500 (E_0 = 5,5)$	$40 \div 118 (E_0 = 18,5)$	$22 \div 25 (E_0 = 200)$
$D, \operatorname{CM}/C$	кВ/см)	кВ/см)	кВ/см)
<i>k</i> , Вт/(см °С)	0,45÷0,54	0,68	1,3÷1,7
$\left \mu_{d}\right _{\max}$, cm ² /(B c)	2400÷2500	1190÷2000	110÷220
3	12,5-13,5	12,35-14	9,5÷9,95
ρ, г/см ³	5,317÷5,37	4,79÷4,81	6,087÷6,15
	$(1,5-1,7) \cdot 10^7$	$(2,0-2,3) \cdot 10^7$	$(2,35\div2,8)\cdot10^7$
<i>V</i> ₀ , CM/C	(Е ₀ = 5,5 кВ/см)	(Е ₀ = 15,0 кВ/см)	(Е ₀ =200 кВ/см)
<i>Т</i> _{пл} , К	1510	1327	1773÷2273

Во второй главе проведен теоретический анализ параметрического взаимодействия в полупроводниках n-GaAs и n-InP.

Третья глава приведены результаты теоретического исследования волн пространственного заряда в полупроводниках n-GaAs и n-InP.

Системы уравнений (1) и (2) решены численно методом Эйлера.

$$\frac{dA_s}{dz} = C_{11}(z)A_s(z) + C_{12}(z)A_i(z)$$
(1)

$$\frac{dA_i}{dz} = C_{21}(z)A_s(z) + C_{22}(z)A_i(z), \qquad (2)$$

При расчетах использовались следующие параметры полупроводниковой структуры: диэлектрическая проницаемость пленки и подложки $\varepsilon = 12,5\varepsilon_0$ (n-GaAs), $\varepsilon = 12,35\varepsilon_0$ (n-InP), диэлектрическая проницаемость среды над пленкой (воздух) ε_0 , концентрация носителей зарядов 4·10¹⁴ см⁻³, толщина пленки 0,25 мкм, коэффициент диффузии 200 см²/с (n-GaAs) и 50 см²/с (n-InP), дрейфовая скорость электронов 1,7·10⁷ см/с при напряженности поля $E_0 = 5,5$ кВ/см (n-GaAs) и 2,3·10⁷ см/с при $E_0 = 18,5$ кВ/см (n-InP). На рисунке 2 зависимости коэффициентов усиления $K_a(z)$ и

преобразования K_t (z) приведены для n-GaAs при следующих частотах и мощностях: $f_s = 35 \ \Gamma \Gamma \mu$, $f_p = 30 \ \Gamma \Gamma \mu$, $P_p = 6,981 \ \text{мкBt}$ (a); $f_s = 40 \ \Gamma \Gamma \mu$, $f_p = 34,67 \ \Gamma \Gamma \mu$, $P_p = 99,78 \ \text{мкBt}$ (б); $f_s = 45 \ \Gamma \Gamma \mu$, $f_p = 20 \ \Gamma \Gamma \mu$, $P_p = 0,374 \ \text{мкBt}$ (в) для n-GaAs.

Рисунок 2 – Зависимости коэффициентов усиления *K_a* и преобразования *K_t* от координаты *z* для n-GaAs.

На рисунке 3 приведены аналогичные зависимости для n-InP при: $f_s = 100 \ \Gamma\Gamma\mu$, $f_p = 30 \ \Gamma\Gamma\mu$, $P_p = 0,1239 \ \text{мкBt}$ (a), $f_s = 120 \ \Gamma\Gamma\mu$, $f_p = 70 \ \Gamma\Gamma\mu$, $P_p = 0,02795 \ \text{мкBt}$ (б), $f_s = 130 \ \Gamma\Gamma\mu$, $f_p = 106,1 \ \Gamma\Gamma\mu$, $P_p = 75,375 \ \text{мкBt}$ (в).

Рисунок 3 – Зависимости коэффициентов усиления *K_a* и преобразования *K_t* от координаты *z* для n-InP

Видно, что наличие в дрейфовом потоке носителей заряда в полупроводнике с ОДП вПЗ с частотой накачки f_p приводит к тому, что затухающие в обычных условиях (без накачки – сплошная кривая) ВПЗ с частотой сигнала $f_s > f_p$ и с образовавшимися в результате параметрического взаимодействия комбинационными частотами $f_s \pm f_p$, могут при определенных условиях стать нарастающими, либо их затухание может быть уменьшено значительно. Это объясняется параметрическим эффектом, приводящим к перекачке энергии ОТ волны накачки К волнам сигнальной И комбинационных частот. Сигнальная ВΠ3 И холостая по мере взаимодействия и распространения периодически обмениваются мощностью, сохраняя общую тенденцию увеличения амплитуды обеих волн. На конце участка взаимодействия обе величины становятся положительными, что указывает на эффективную параметрическую связь ВПЗ сигнальной и холостой частот. Это означает, что низкочастотная накачка повышает верхний частотный предел усилителей бегущей волны на n-GaAs и n-InP. На фоне общей тенденции роста зависимостей коэффициенты усиления Ка и преобразования К_t от координаты z при увеличении z имеют довольно сильные колебания этих зависимостей, причем фазы этих колебаний практически противоположны, а их размах максимален при малых z, и уменьшается с ростом z. При увеличении P_n «частота» колебаний зависимостей K_a(z) и K_t(z) возрастает. Причем для n-InP «частота» колебаний этих зависимостей более высокая, чем для n-GaAs. Подавая низкочастотную накачку, можно как усилить ВПЗ сигнальной частоты (для определенных z), так и заглушить их для обоих материалов.

На рисунках 4 и 5 приведены зависимости K_a и K_t от мощности накачки P_p для следующих параметров: $f_s = 35 \Gamma \Gamma \mu$, $f_p = 5 \Gamma \Gamma \mu$ (a); $f_s = 40 \Gamma \Gamma \mu$, $f_p = 15 \Gamma \Gamma \mu$ (б); $f_s = 45 \Gamma \Gamma \mu$, $f_p = 25 \Gamma \Gamma \mu$ (в) для n-GaAs и $f_s = 100 \Gamma \Gamma \mu$, $f_p = 50 \Gamma \Gamma \mu$ (а), $f_s = 120 \Gamma \Gamma \mu$, $f_p = 40 \Gamma \Gamma \mu$ (б), $f_s = 130 \Gamma \Gamma \mu$, $f_p = 106,1 \Gamma \Gamma \mu$ (в) для n-InP соответственно. Для всех зависимостей длина взаимодействия равна 50 мкм.

Рисунок 4 – Зависимости K_a и K_t от мощности накачки P_p для n-GaAs.

Рисунок 5 – Зависимости K_a и K_t от мощности накачки P_p для n-InP.

Наблюдается сходное поведение зависимостей K_a и K_t от z. Максимальная мощность накачки P_p для каждой частоты накачки определялась из условия $P_p = \frac{P_{p0}}{e^{-\alpha_p z}}$, где $P_{p0} = 0,1$ мВт. На всех зависимостях наблюдается тенденция роста K_a и K_t с увеличением P_p и при определенных условиях они могут стать положительными, т.е. на частоте f_s может быть достигнуто усиление, и на частоте f_i автодинное преобразование.

На рисунках 6 и 7 приведены зависимости коэффициентов K_a и K_t от частоты накачки f_p при $f_s = 35$ ГГц, $P_p = 0,04936$ мкВт (a), $f_s = 40$ ГГц, $P_p =$ 0,19744 мкВт (б), $f_s = 45$ ГГц, $P_p = 0,09872$ мкВт (в) для n-GaAs и $f_s = 110$ ГГц, $P_p = 0,0256$ мкВт (a), $f_s = 110$ ГГц, $P_p = 0,0786$ мкВт (б), $f_s = 100$ ГГц, $P_p =$ 0,01024 мкВт (в) для n-InP. Видно, что имеются довольно сильные колебания зависимостей: существуют участки, на которых небольшое изменение параметров накачки приводит к значительному изменению коэффициентов усиления и преобразования. Изменяя только мощность накачки при прочих равных параметрах, возможно, как усилить ВПЗ сигнальной и холостой частот, так ослабить их (рисунок 7). Например, при $f_p = 10$ ГГц $K_a = -6,92$ дБ и $K_t = -4,5$ дБ, при $f_p = 14,3$ ГГц $K_a = -35,62$ дБ и $K_t = 4,18$ дБ, а при $f_p = 20$ ГГц $K_a = 6,15$ дБ и $K_t = 8,32$ дБ (рисунок 7 (в)). Все зависимости имеют куполообразную форму. На частотных зависимостях K_a и K_t виден максимум при частоте накачки $f_p \approx f_s/2$.

На зависимостях имеется большая изрезанность линий, связанная с накачкой. Проведенные исследования показали, что основное влияние на это оказывает произведение *MC*₁₁.

Рисунок 6 – Зависимости K_a и K_t от частоты накачки f_p n-GaAs.

f_s = 110 ГГц, Р_р = 0,00768 мкВт

Рисунок 7 – Зависимости K_a и K_t от частоты накачки f_p n-InP.

На рисунках 8 и 9 показаны зависимости K_a и K_t от частоты сигнала f_s при $f_p = 15$ ГГц, $P_p = 1,826$ мкВт (а), $f_p = 34,67$ ГГц, $P_p = 1,826$ мкВт (б) для п-GaAs и $f_p = 30$ ГГц, $P_p = 0,219$ мкВт (а), $f_p = 106,1$ ГГц, $P_p = 1,826$ мкВт (б) для п-InP.

Рисунок 8 – Зависимости K_a и K_t от частоты сигнала f_s n-GaAs.

Видно, что подача низкочастотной накачки ($f_p < f_s$) для ТПС с типичными электрофизическими параметрами приводит к заметному повышению (на 13,6 (а), 32,7 (б) и 10,7 (а), 39,1 % (б)) верхнего частотного предела усиливаемых ВПЗ. Также обеспечивается автодинное

преобразование при частоте входного сигнала до 39,4 (а), 46 (б) ГГц для n-GaAs и до 117,5 (а), 147,6 (б) ГГц для n-InP.

Рисунок 9 – Зависимости K_a и K_t от частоты сигнала f_s n-InP

ЗАКЛЮЧЕНИЕ

Проведено исследование параметрического взаимодействия основных мод ВПЗ в условиях низкочастотной накачки в ТПС с ОДП с сильной асимметрией и жесткой границей потока носителей заряда.

Анализ полученных результатов показывает, что:

1 Низкочастотная накачка приводит к заметному повышению верхнего частотного предела усилителей бегущей волны до 32,7 % для n-GaAs и до 39,1 % для n-InP;

2 Подача низкочастотной накачки обеспечивает автодинное преобразование до 46 ГГц для n-GaAs и до 147,6 ГГц для n-InP;

3 Параметры накачки могут быть подобраны таким образом, что можно добиться как усиления сигнальной волны, так и автодинного преобразования одновременно с полным гашением сигнала;

4 Проведенные исследования показали, что фосфид индия и нитрид галлия являются перспективными материалами для создания функциональных устройств на ВПЗ в полупроводниках с ОДП.

Таким образом, показана возможность создания на основе параметрического взаимодействия волн в полупроводниках функциональных микроэлектронных устройств СВЧ диапазона различного типа и, в частности, параметрических устройств с низкочастотной накачкой.

16