Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра физики полупроводников

Анализ механизма проводимости квантовых точек InSb на основе теории автоэлектронной эмиссии

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студента 2 курса 202 группы

направления 11.04.04 «Электроника и наноэлектроника»

факультета нано- и биомедицинских технологий

Рухлова Никиты Андреевича

Научный руководитель

<u>доцент, к.ф.-м.н.</u> должность, уч. степень, уч. звание

подпись, дата

<u>Кабанов В. Ф.</u> фамилия, инициалы

Зав. кафедрой

д.ф.-м.н., профессор

должность, уч. степень, уч. звание подпись, дата

<u>Михайлов А.И.</u> фамилия, инициалы

Саратов 2019

введение

Общая характеристика работы.

Актуальность темы. В настоящее время исследование структур с квантово-размерными эффектами является одним из самых актуальных направлений физики и техники полупроводников в связи с развитием микроэлектроники и наноэлектроники. С переходом к структурам с квантоворазмерными эффектами возникают сложности, требующие особого подхода с применением новых методов измерений. Исследование квантово-размерных эффектов в таких структурах позволяет разрабатывать и создавать микроэлектронные устройства с верхней границы диапазона рабочих частот, которые принимают значения порядка единиц терагерц (ТГц), время переключения составляет ~ 1 пс. Проявление квантово-размерных ограничения носителей заряда в структурах используется как при создании сверхбыстродействующих микроэлектронных приборов, но и являются перспективными элементами для создания элементов оптоэлектронных приборов, например для лазерных диодов и переключающих устройств. Это объясняется квантованием энергии и импульса носителей заряда, то есть квантово-размерных эффектов. Ha данный наличием момент предпринимаются попытки использовать эффект ограничения снизу временем туннелирования электронов со скоростью прохождения слоя толщиной 10^6 см менее чем за 10⁻¹³ с для создания СВЧ приборов с рабочими частотами более 10³ ГГц. Невозможность исследования данных структур обычными методами на данный момент – главное ограничение в исследовании таких структур. Для оптической микроскопии существует дифракционное ограничение, которое не позволяет применять ультрафиолетовую оптику с уровнем 0.1 мкм в связи с минимальной длиной волны поглощения ультрафиолетового света в воздухе порядка 0.19 мкм. Для электронной микроскопии существует всем известная проблема определения «края», помимо этого, видимый контраст не позволяет определить топологические размеры по координате у. В качестве решения всех указанных проблем могут выступить методы сканирующей зондовой микроскопии. Они позволяют изучать не только рельеф, но и ряд физических свойств поверхности и объектов на ней. В связи с интенсивным развитием разнообразных технологий изготовления полупроводниковых структур, в центре внимания на данный момент находятся именно квантово-размерные объекты, что обусловлено совокупностью их уникальных свойств, отличных от свойств обычных систем. Причина проявления таких свойств – изменение энергетического спектра электронов и дырок в структурах с очень малыми размерами. Особый интерес представляют собой материалы группы A^3B^5 в связи с рядом особенностей: широкая область рабочих частот, высокие, по сравнению с остальными полупроводниковыми материалами, значения подвижностей носителей заряда, сохранение свойств материалов при комнатной температуре. Все вышеперечисленные особенности позволяют активно применять такие материалы в современной микроэлектронике. Материалы группы A^3B^5 являются основой современных больших и сверхбольших интегральных схем, на их основе создаются тиристоры и транзисторы, солнечные батареи, полупроводниковые лазеры и светодиоды, фотоприемники, а так же высокочувствительные термометры и датчики магнитных полей.

Цель и задачи магистерской работы.

Целью магистерской работы является изучение механизма проводимости полупроводниковых структур с квантовыми точками InSb при значениях напряженности электрического поля от 2,83*10⁹ В/м до 4,56*10⁹ В/м адекватно описывается теорией автоэлектронной эмиссии Моргулиса-Стрэттона из полупроводникового материала.

Положение, выносимое на защиту. Показано, что механизм проводимости полупроводниковых структур с квантовыми точками InSb при значениях напряженности электрического поля от 2,83*10⁹ В/м до 4,56*10⁹ В/м адекватно описывается теорией автоэлектронной эмиссии Моргулиса-Стрэттона из полупроводникового материала. Структура магистерской работы. Кроме ВВЕДЕНИЯ, ЗАКЛЮЧЕНИЯ, СПИСКА ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ и ПРИЛОЖЕНИЙ работа включает 6 основных раздела:

1. Квантовые точки;

2. Туннельный эффект;

3. Автоэлектронная эмиссия;

4. Сканирующая туннельная микроскопия;

5. Практическая часть;

6. Исследование и анализ полученных результатов.

В разделе 1 был проведен анализ литературы по сопутствующим данной работе темам. Внимание уделялось квантовым точкам, а именно видам квантовых точек, их квантово-размерным свойствам и области их применения.

В разделе 2 рассматривалось туннелирование, а также было представлено квантово-механическое описание туннельного эффекта.

Раздел 3 посвящен понятию автоэлектронной эмиссии. Указан механизм автоэлектронной эмиссии, введено понятие потенциального барьера. Была описана теория Фаулера-Нордгейма для автоэлектронной эмиссии из полупроводникового материала.

В разделе 4 представлены измерения, проводившиеся посредством использования метода сканирующей туннельной микроскопии, что показано в этом разделе.

В разделе 5.1 в качестве объектов исследования были выбраны квантовые точки группы A3B5 (соединение InSb). Квантовые точки были синтезированы по методике, описанной в работах [1, 2]. В качестве стабилизаторов использовался триоктилфосфин (TOP) для раствора КТ InSb. Исходные коллоидные растворы КТ предварительно подвергались очистке от избыточного количества стабилизатора, не связанного с КТ, путем

фильтрации с использованием полиэтилена высокой плотности в качестве мембраны [3]. Для формирования монослойной структуры и для предотвращения агрегации КТ друг с другом, в исходные коллоидные растворы квантовых точек InSb был добавлен хлороформ.

Для формирования макрообъектов – полупроводниковых образцов с упорядоченными структурами, состоящими из нанообъектов (квантовых точек) многообещающими являются технологии, использующие эффекты самоорганизации, когда структуры определенных размеров формируются сами, под влиянием внутренних сил, действующих в процессе роста. К числу таких технологий относится технология Ленгмюра-Блоджетт (рисунок 1, 2).

Ленгмюра-Блоджетт образуются, Пленки когда амфифильные поверхностно-активные молекулы, такие как вещества (IIAB) взаимодействуют с воздухом на границе раздела воздух-вода. ПАВ имеют несимметричное строение молекулы, которая состоит из полярных и неполярных групп (рисунок 3). При помещении ПАВ на поверхность воды его молекулы самопроизвольно образуют ориентированный монослой на поверхности раздела фаз в соответствии с условием уменьшения энергии Гиббса в системе: полярные группы располагаются в водной фазе, а гидрофобные радикалы вытесняются из водной среды и переходят в менее полярную фазу – воздух. В этот момент молекулы на поверхности располагаются хаотически. После распределения ПАВ по поверхности водной фазы с помощью барьеров уменьшается площадь поверхности воды, распределенные по поверхности воды молекулы сжимаются и создается тонкая пленка.

5

Рисунок 1 – Формирование пленки Ленгмюра-Блоджетт.

Рисунок 2 – Строение молекулы поверхностно-активного вещества.

Рисунок 3 – Используемая установка – ванна Ленгмюра-Блоджетт.

В разделе 5.2 указано описание методики измерений. Измерения проводились при помощи метода СТМ на сканирующем туннельном «НАНОЭДЬЮКАТОР II». В микроскопе основе работы СЗМ НАНОЭДЬЮКАТОР II используется зависимость величины токового взаимодействия между поверхностью исследуемого образца и зондом в виде заостренной платино-иридиевой иглы. Процесс детектирования туннельного тока, протекающий при определенном постоянном электрическом смещении между образцом и зондом, позволяет исследовать исключительно проводящие объекты. Пространственное разрешение определяется такими параметрами радиус закругления кончика зонда, уровень тепловых дрейфов как конструкции и механических вибраций, а также уровень электронного шума измерительной аппаратуры. Наконечник платино-иридиевой иглы имеет определенный радиус закругления вершины порядка 1 нм [4].

На рисунке 4 изображена функциональная блок-схема СЗМ НАНОЭДЬЮКАТОР II, которая состоит из СЗМ контроллера, базового блока, измерительной головки, соединительных кабелей, а также ПК.

Рисунок 4 – Функциональная схема прибора.

В предусилитель поступает сигнал от датчика взаимодействия, после чего преобразованный сигнал поступает в СЗМ-контроллер через базовый блок. Затем, в базовый блок поступают управляющие сигналы, исходящие от СЗМ контроллера. Компьютер необходим для осуществления управления СЗМ контроллером при помощи контроллера связи (рисунок 5).

Рисунок 5 – Принцип регистрации туннельного тока.

Между проводящим зондом и проводящим образцом прикладывается разность потенциалов. Это необходимо для регистрации туннельного тока.

Преобразователь, который располагается в измерительной головке изображенной на рисунке 5, вырабатывает определенное электрическое напряжение UT, которое обусловливает успешное протекание туннельного тока I, и выдает пропорциональное току напряжение U в электронный блок (Рисунок 5) [5].

В разделе 5.3 представлены результаты проводившихся измерений. При помощи метода СТМ были получены экспериментальные туннельные вольтамперные характеристики квантовых точек InSb. Для исследования и анализа были использованы 4 типичные туннельные ВАХ, представленные на рисунке 19:

Рисунок 6 – Типичные экспериментальные туннельные ВАХ КТ InSb.

Характерные «отсечки» при значении тока 50 нА (рисунок 6) обусловлены особенностями туннельного микроскопа [2], а именно максимально допустимыми значениями туннельного тока, исследуемыми в процессе измерений.

В разделе 6 представлены исследование и анализ полученных результатов. Характерный размер квантовых точек InSb составил 5 нм. Так как характерный размер КТ существенно меньше длины волны де Бройля для

InSb, можно с уверенностью утверждать, что исследуемые точки являются квантово-размерными объектами. (рисунок 6) [7].

Интерес в данном исследовании представляет обратная ветвь типичного туннельного ВАХ, соответствующая эмиссии электронов из полупроводника в металл (зонд). Интересующие нас линейные участки типичных туннельных ВАХ находились в диапазоне значений напряженности электрического поля от 2,83*10⁹ В/м до 4,56*10⁹ В/м и были построены в координатах (Ln I – V⁻¹) (рисунок 7) [8].

Рисунок 7 – Типичные ВАХ в координатах Ln(I) от V⁻¹.

Для интерпретации экспериментальных результатов ВАХ использовались представления об автоэмиссии из полупроводников по теории Моргулиса-Стрэттона:

$$j_{s} = q n_{0} \left(\frac{kT}{2\pi m_{0}} \right)^{1/2} e^{-\frac{8\pi\sqrt{2m_{*}A_{s}^{3}}}{3hqE}\theta}$$
(1)

где m₀ — масса электрона;

m^{*} - эффективная масса электрона;

θ — значения функции Нордгейма;

As — работа выхода электронов из полупроводника;

Е — локальная напряженность электрического поля;

n0 — концентрация электронов в объеме полупроводника;

q — модуль заряда электрона.

Были построены теоретические линейные ВАХ для InSb, которые ставились в соответствие экспериментально полученным данным (рисунок 8).

Значение работы выхода электронов для материала InSb выбиралось равным 4,9 эB, а расстояние между зондом и квантовой точкой - 1 нм. Использование рассчитанных (рисунок 8) и известных литературных значений и данных позволило оценить θ – величину функции Нордгейма, которая учитывает степень понижения потенциального барьера. Для квантовых точек InSb она оказалась порядка (2,0-3,5)·10⁻¹, что значительно меньше, чем значение функции θ в случае эмиссии электронов из металла (0,7 – 0,9), полученные значения являются характерными значениями для эмиссии из полупроводникового материала [2]. Анализ полученных экспериментальных и расчетных данных позволяет выдвинуть предположение, что

полупроводниковая квантовая точка в некотором смысле выполняет ту же функцию, что и область пространственного заряда в приповерхностной области объемного полупроводника при автоэлектронной эмиссии. Это приводит к ослаблению напряженности локального электрического поля вблизи поверхности, эмитирующей электроны

ЗАКЛЮЧЕНИЕ. Таким образом, в данной работе на основе исследования и анализа типичных туннельных ВАХ КТ InSb показано, что механизм наблюдавшегося тока автоэлектронной эмиссии успешно согласуется с теорией Моргулиса-Стрэттона. Приведены численные значения функции Нордгейма, которые находятся в диапазоне от 2*10⁻¹ до 3.5*10⁻¹. соответствующие экспериментальным ВАХ. Полученные численные значения функции Нордгейма для диапазона значений напряженности электрического поля от 2,83*10⁹ В/м до 4,56*10⁹ В/м на порядок меньше значений для (0,7-0,9) и согласуются с аналогичными металлов исследованиями, представленными для объемного полупроводника InSb (0,2).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Speranskaya, E. S. Preparation of Water Soluble Zinc-Blende CdSe/ZnS Quantum dots / E. S. Speranskaya, V. V. Goftman, I. Yu. Goryacheva // Nanotechnologies in Russia. – 2013. –V. 8. № 1-2. –P. 129-135.
- 2 Kosolapova, K. I. Purification non-aqueous solution of quantum dots CdSe-CdS-ZnS from excess organic substance-stabilizer by use PE-HD membrane / K. I. Kosolapova, A. J. K. Al-Alwani, I. A. Gorbachev, E. G. Glukhovskoy // J. Phys.: Conf. Ser. 2015. V. 64. –P. 1-5
- Reiss, P. Core/shell semiconductor nanocrystals / P. Reiss, M. Protiere, L. Li
 // Small. 2009. V. 5. № 2. P. 14-168.
- 4 Троян В. И., Пушкин М. А., Борман В. Д. Физические основы методов исследования наноструктур и поверхности твердого тела: Учебное пособие. Москва, 2008.
- 5 Власов, А. И. Электронная микроскопия : учебное пособие / А. И. Власов, К. А. Елсуков, И. А. Косолапов. М. : Изд-во МГТУ им. Н.Э. Баумана, 2011. 168 с.
- 6 Mikhailov, A. I. Electronic Properties of A2B6 Quantum Dots Incorporated into Langmuir–Blodgett Films / A. I. Mikhailov, V. F. Kabanov, I. A. Gorbachev, A. V. Kazak, N. V. Usol'tseva, E. G. Glukhovskoy // Bulletin of the Russian Academy of Sciences: Physics. – 2017. - V. 81. № 12. - P. 1472–1475.
- 7 Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники: Учебное пособие. М.: Университетская книга; Логос; Физматкнига, 2006. 496 с.
- 8 Елинсон М.И., Васильев Г.Ф. Автоэлектронная эмиссия / Под ред. Д.В.
 Зернова. М.: Гос. изд. физ.-мат. лит., 1958. 272 с.
- 9 А.И. Михайлов, В.Ф. Кабанов, Н.Д. Жуков. Письма в ЖТФ, 41(12), 8 (2015)
- Кузьменко А.П., Кузько А.Е., Тимаков Д.И. // ЖТФ. 2013. Т. 83. В. 2. С. 91–96.