МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра динамического моделирования и биомедицинской инженерии

Методы выделения специфических элементов (артефактов) энцефалограмм и их приложение

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента	2 курса		206 группы	
направления 12.04.04 Биотехнические системы и технологии				
факультета нано- и биомедицинских технологий				
Игнатова Александра Сергеевича				
		. 1	1	
Научный руководител	īЬ			
Доцент, к.фм.н				Е.В. Навроцкая
должность, уч.степень, уч. зва	ние		подпись, дата	инициалы, фамилия
Зав. кафедрой, д.фм	.н., доцент			Е.П. Селезнев
должность, уч.степень, уч. зва			подпись, дата	инициалы, фамилия

Введение

Характерной чертой современной прикладной науки является широкое внедрение в медицинскую диагностику новых мер и методов обработки данных наблюдения с использованием продуктов нелинейной динамики. Большинство современных медицинских приборов используют цифровое представление информации, так что наблюдаемые величины имеют вид дискретной последовательности отсчетов – временного ряда. Современные разработке технологии привели К компактных, помехозащищенных кардиографов и электроэнцефалографов, а также средств запоминания большого объема информации. Это позволяет делать очень длинные (до суток) записи наблюдаемых процессов – получать временные ряды включающие сотни тысяч и более точек. При этом стала весьма актуальной проблема автоматизации анализа этих данных, так как визуальный просмотр материала специалистом становится очень долгим и даже не реальным. Поэтому разработка способов автоматизации анализа временных рядов весьма актуально и этой тематике посвящена данная работа.

Цель работы:

Целью данной диссертационной работы является анализ существующих способов автоматизации анализа ЭЭГ и разработка компьютерных программ для выделения из записей некоторых видов артефактов, в том числе признаков эпилептических приступов, их апробирование, как на модельных данных, так и на реальных сигналах.

Основные задачи, решаемые в работе:

- 1. Обзор существующих методов автоматического детектирования артефактов.
- 2. Изучение метода реконструкции прогностических моделей по временным рядам.
- 3. Разработка модели временного ряда ЭЭГ и его использование для демонстрационного примера возможности детектирования артефактов с помощью реконструируемой по ряду прогностической модели.
- 4. Разработка компьютерной программы для выделения артефактов жевания и эпилептического приступа по записи ЭЭГ реального пациента.

Научная новизна:

Продемонстрирована возможность использования метода реконструкции модели по временному ряду в качестве алгоритма детектирования некоторых артефактов в записях электроэнцефалограмм.

Научная и практическая значимость результатов:

Результаты магистерской диссертационной работы расширяют набор методов автоматизации анализа экспериментальных временных рядов в электроэнцефалографии. Рассмотренный метод анализа записей с помощью реконструируемой по ряду прогностической математической модели может применяться для практического анализа сигналов электроэнцефалограммы пациентов с диагнозом эпилепсия.

Эталонная модель сигнала ЭЭГ больного может быть использована для проверки и апробирования возможностей метода применительно к различным вариантам патологической активности.

Структура работы:

Во введении проходит обсуждение актуальности и практической значимости проблем, которые будут рассмотрены в основной части. Формируется и формулируется цель научной работы, перечисляются основные задачи, которые будут вынесены на защиту диссертации.

В первой главе ведётся обзор особенностей записей электрической активности головного мозга, снимаемой с поверхности кожи головы, а также особенности применения метода регистрации таких потенциалов. Обсуждение этих вопросов особенно важно применительно к эпилепсии - одного из самых распространенных заболеваний, поэтому биологическую особенность ее протекания разобрана подробнее. Востребованность длительной регистрации ЭЭГ растет, если пациент находится в коме т.к. эта категория людей требует своевременного получения диагностических данных для определения необходимости медикаментозного вмешательства.

Во второй главе приведён наглядный пример анализа детектирования артефактов методом различных вейвлет преобразований и методом экстраполяции и делается вывод о целесообразности второго подхода,

который отличается своей простотой и лёгкостью реализации.

В третьей главе рассматривается обзор метода реконструкции динамических моделей по временным рядам, особенности подхода такого моделирования, плюсы и минусы. В качестве эталона для теоретического и практического описания модели используются суперпозиция трех синусоид с добавлением шума. Приводятся графические представления реконструкции.

В четвёртой главе метод реконструкции используется для анализа артефактов электроэнцефалограмм по выявлению на временной реализации процессов жевания и эпилептических приступов. Представлена визуализация метода, где ошибкой аппроксимации показана работоспособность. Показана работоспособность метода даже при наличии умеренных шумов.

В заключении подводятся выводы о методе реконструкции, как более простой замене уже известных ранее описанных методов, преимущества, относительно спектральных подходов.

Список использованных источников

- Безручко Б.П., Селезнев Е.П., Смирнов Д.А. Реконструкция уравнений неавтономного осциллятора по временному ряду (модели, эксперимент) // Известия ВУЗов. Прикладная нелинейная динамика, 1999. Т. 7, № 1. С 49.
- Безручко Б.П., Диканев Т.В. Смирнов Д.А. Тестирование на однозначность и непрерывность при глобальной реконструкции уравнений по временным рядам // Известия ВУЗов «Прикладная нелинейная динамика». 2002. Т. 10, № 4. С. 69-81.
- Безручко Б.П., Диканев Т.В., Смирнов Д.А. Глобальная реконструкция модельных уравнений по реализации переходного процесса // Изв. ВУЗов. Прикладная нелинейная динамика. 2001. Т. 9, № 3. С. 3 14.
- 4. Bezruchko B., Smirnov D. Constructing nonautonomous differential equations from an experimental time series // Phys. Rev. E. 2001. Vol. 63. 016207.
- 5. Dikanev T., Smirnov D., Ponomarenko V., and Bezruchko B. Three subproblems of global model reconstruction from time series and their peculiarities // Izv. VUZ «Applied Nonlinear Dynamics». 2003. Vol. 11, No. 3. P. 165-178.
- 6. Bezruchko Boris, Smirnov Dmitry, Dikanev Taras, and Sysoev Ilya. Construction of dynamical model equations for non-autonomous systems from time series (peculiarities and special techniques) // in: Chaos and its reconstruction / Meunier-Guttin-Cluzel S. and Gouesbet G. (eds.), Novascience, New York, 2004.
- 7. Грибков Д.А., Грибкова В.В., Кравцов Ю.А., Кузнецов Ю.И., Ржанов А.Г. Восстановление структуры динамической системы по временным рядам // Радиотехника и электроника.1994. Т.39, В.2. С.269-277.
- 8. Фейгин А.М., Мольков Я.И., Мухин Д.Н., Лоскутов Е.М. Прогноз качественного поведения динамических систем по хаотическому временному ряду // Изв. Вузов. Радиофизика. 2001. Том XLIV, № 5-6. С. 376-397.
- 9. Павлов А.Н., Янсон Н.Б., Анищенко В.С. Применение статистических

- методов при решении задачи глобальной реконструкции // Письма в ЖТФ. 1997. Т.23, № 8. С.7-13.
- 10. Павлов А.Н., Янсон Н.Б., Анищенко В.С. Реконструкция динамических систем // Радиотехника и электроника. 1999. Т. 44, № 9. С. 1075-1092.
- 11. Шишкин С.Л., Бродский Б.Е., Дарховский Б.С., Каплан А.Я. ЭЭГ как нестационарный сигнал подход к анализу на основе непараметрической статистики // Физиология человека. 1997. Т 23, № 4. С. 124-126.
- 12. Безручко Б.П., Диканев Т.В., Смирнов Д.А. Тестирование на однозначность и непрерывность при глобальной реконструкции модельных уравнений по временным рядам // Известия ВУЗов «Прикладная нелинейная динамика». 2002. Т. 10, № 4. С. 69-81.
- 13. Bezruchko B.P., Seleznev Y.P., Ponomarenko V.I., Prohorov M.D., Smirnov D.A., Dikanev T.V., Sysoev I.V., Karavaev A.S. Special approaches to global reconstruction of equations from time series // Izv. VUZ «Applied Nonlinear Dynamics». 2002. Vol.10, N3.
- 14. Безручко Б.П., Диканев Т.В., Смирнов Д.А.. Выбор динамических переменных при глобальной реконструкции по временным рядам // Тезисы докладов VI научной конференции Нелинейные колебания механических систем. Нижний Новгород 2002, с.20-21.
- 15. Безручко Б.П., Виноградов А.Е., Диканев Т.В., Смирнов Д.А. Сравнение различных подходов к оптимизации структуры эмпирических модельных уравнений // Тезисы докладов VI научной конференции Нелинейные колебания механических систем. Нижний Новгород 2002, с.19-20.
- 16. Dikanev T.V., Bezruchko B.P.. The role of transient process and reconstruction of model equations from time series. // The book of abstracts of 6th international school on chaotic oscillations and pattern formation Chaos 2001, Saratov 2001, p. 24-25.
- 17. Диканев Т.В. Об использовании переходных процессов при восстановлении уравнений по временным рядам // Материалы научной

- школы-конференции «Нелинейные дни в Саратове для молодых 2000», Саратов, ГосУНЦ «Колледж».
- 18. Диканев Т.В., Пономаренко В.И. «Информационная ценность различных участков временного ряда для восстановления уравнений динамической системы» // V международная конференция Нелинейные колебания механических систем. Тезисы докладов, Нижний Новгород, стр. 182-183, 1999.
- 19. Грищенко А.А., Кузнецова Г.Д., Сысоев И.В. «Нелинейный корреляционный анализ внутричерепных ЭЭГ крыс-генетических моделей абсансной эпилепсии в скользящем временном окне» // Доклад XI Всероссийской конференции молодых ученых «Наноэлектроника, нанофотоника и нелинейная физики». Саратов, стр. 36, 2016.
- 20.Гуляев СА., Архипенко ИВ., «Артефакты при электроэнцефалографическом исследовании: выявление и дифференциальный диагноз» // Рус. жур. дет. невр.: т. VII, вып. 3, 2012.
- 21. Руннова А.Е., Лопатин Д.В., Журавлев М.О., «Математические методы распознавания паттернов движения экспериментальных данных многоканальной электроэнцефалографии человека» // Вестник ТГУ, т.21, вып.6, 2016.
- 22. Общая заболеваемость взрослого населения России в 2015 году. Статистические материалы. – М.: Минздрав, 2016. ч. IV. С.5.
- 23. Хованов И.А., Хованова Н.А. Методы анализа временных рядов, Саратов 2001, 234 с.