МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нефтехимии и техногенной безопасности

Оценка опасностей при аварии на установке изомеризации

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента(ки) 4 курса 441	группы	
направления 20.03.01	Техносферная безопа	сность
-	направления (специальност	
Институ	ут химии	
Кожевниково	й Юлии Александровні	Ы
Научный руководитель		
доцент, к.х. <u>н</u>		В.З. Угланова
должность, уч. степень, уч. звание	дата, подпись	инициалы, фамилия
Заведующий кафедрой		
д.х.н., профессор		Р.И. Кузьмина
должность, уч. степень, уч. звание	дата, подпись	<u></u>

ВВЕДЕНИЕ

Обеспечение промышленной безопасности на предприятиях является актуальной проблемой в условиях современного производства. Тенденция внедрения новых технологий на опасных производственных объектах с одной стороны и непрерывное старение промышленного оборудования с другой, заставляют искать новые подходы к проблемам обеспечения промышленной безопасности.

развитием новых промышленных производств, стремительно развивается нормативно-правовая база В области промышленной безопасности и экологии – необходимы новые технические регламенты, Ростехназор поэтому регулярно выпускает новые директивы. Соответственно, обеспечение промышленной безопасности и соблюдение требований экологической безопасности становиться все более актуальным, с учетом участившихся экологических и техногенных катастроф.

Целью работы является анализ производственной безопасности установки изомеризации ПГИ-ДИГ/280 НПЗ.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- охарактеризовать НПЗ как опасный производственный объект, то где он находится территориально, производимые им виды услуг;
- изучить расстановку технологического оборудования на объекте, рассмотреть технологические схемы обслуживания автотранспортного предприятия, оценить статистику получения травм в НПЗ;
- определить и рассчитать параметры, характеризующие поражающие факторы пожарной и взрывной опасности;
 - оценить экологический и экономический ущербы, нанесенные ЧС;
- определить мероприятия по повышению безопасности и минимизации воздействия негативных факторов ЧС

Объектом исследования бакалаврской работы является установка изомеризации ПГИ-ДИГ/280. Предметом исследования — процесс обеспечения производственной безопасности на установке. Установка предназначена для получения высокооктанового компонента товарного автомобильного бензина, позволяющего выпускать топливо с пониженным содержанием серы, бензола и ароматики в целом, соответствующее требованиям стандарта "ЕВРО-IV".

Назначение процессов гидроочистки и изомеризации

Гидроочистка нефтяных дистиллятов является одним из наиболее распространенных процессов на нефтеперерабатывающих предприятиях. Основной целью гидроочистки нефтяных дистиллятов является уменьшение содержания в них серо-, азот-, кислород- и металлсодержащих соединений. При гидроочистке, протекающей в среде водорода, указанные соединения (кроме последних) преобразуются в соответственно сероводород, аммиак, углеводороды и воду.

Промышленные процессы основаны на реакциях углеводородов, протекающих при их контактировании с активными центрами катализаторов гидроочистки, в основном алюмокобальтмолибденовых и алюмоникельмолибденовых.

Процесс гидроочистки необходимо обеспечивать водородом, получая его извне, в том числе и с установок каталитического риформинга.

Процесс изомеризации применяется для превращения низкооктановых соединений с прямой цепью в их разветвленные изомеры, обладающие более высоким октановым числом. Легкое сырье проходит операцию осушки, а затем пропускается над активированным соединениями хлора платиновым катализатором в присутствии водорода (также прошедшего осушку). Температуры в реакторах изомеризации поддерживаются в диапазоне низких значений $130-170^{0}$ C, что позволяет использовать преимущество более высокой равновесной концентрации изомеров более при низких минимума протекание реакций температурах, a также снизить до гидрокрекинга.

Процесс изомеризации требует очень низкого парциального давления водорода, что позволяет использовать прямоточную схему подачи водорода.

С целью повышения выхода высокооктановых продуктов в технологическую схему может быть включена колонна отгонки изогексана,

из которой боковым погоном отбираются низкооктановые C_6 н-парафины и метилпентаны, которые рециркулируют обратно в реакционную секцию.

В случае высокого (более 1,0 % мас.) содержания бензола перед реакторами изомеризации располагается секция гидрирования бензола, что позволяет избежать сильного экзотермического эффекта в реакторах изомеризации и, тем самым, способствует протеканию реакции изомеризации в оптимальном температурном режиме.

Общие правила безопасности при работе на установке

Требования по пожарной безопасности производства. Основные мероприятия по пожарной безопасности

Требуемый уровень пожарной безопасности установки ПГИ-ДИГ/280 обеспечивается техническими, конструктивными и компоновочными решениями.

В соответствии с характеристикой горючих веществ, обращающихся в технологическом процессе, пожары на установке относятся к классам В, С и Е.

Для снижения возможных последствий пожара установка обеспечена следующими средствами пожаротушения.

Сигнал «Пожар», «Неисправность» поступает в автоматическом режиме на пульт центра наблюдения (ПЦН) ВПЧ-10.

Требования пожарной безопасности к содержанию территории, системам обнаружения пожара и средствам и пожаротушения.

На зимний период должны быть выполнены следующие действия.

На установке должно быть определено лицо, ответственное за приобретение, ремонт, сохранность и готовность к действию первичных средств пожаротушения.

Каждый огнетушитель установки должен иметь порядковый номер, нанесенный на корпус белой краской. На него заводят паспорт по установленной форме.

Огнетушители должны всегда содержаться в исправном состоянии, периодически осматриваться, проверяться и своевременно перезаряжаться.

На каждую систему (АУПТ и АУПС) приказом по предприятию должны быть.

Взрыв типа «BLEVE» при перегреве сырьевой емкости гидроочистки D-101

Краткое описание сценария аварии: Разгерметизация оборудования → выброс взрывопожароопасного вещества в открытое пространство → образование переобогащенного облака ТВС → сгорание облака ТВС в режиме «огненного шара» при наличии источника инициирования → повреждение соседнего оборудования и поражение персонала открытым пламенем и тепловым излучением (таблица 1).

Наименование и количество вещества, участвующего в аварии: лёгкая бензиновая фракция, 37,74 т. Количество вещества, участвующего в создании поражающих факторов: до 37,74 т. Основные поражающие факторы: открытое пламя, тепловое излучение, ударная волна.

Схема ситуационного плана аварии представлена на рисунке 1.

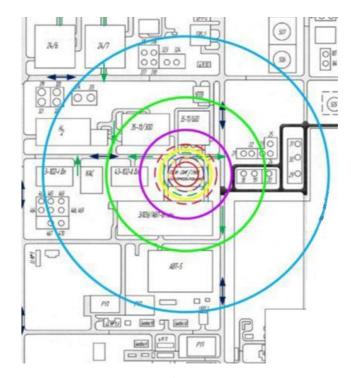


Рисунок 1 — Ситуационный план наиболее опасного сценария аварии в блоке 1.

Таблица 1 – Основные зоны разрушения при взрыве газовоздушной смеси,

при разгерметизации сепаратора

Зоны разрушений избыточным давлением	Радиус зон, м
Полное разрушение зданий (100 кПа)	68,3
50 %-ное разрушение зданий (53 кПа)	100,6
Средние повреждения зданий (28 кПа)	172,4
Умеренные повреждения зданий (повреждение	502,9
внутренних перегородок, рам, дверей и т.п.) (12 кПа)	
Нижний порог повреждения человека волной	898,1
давления (5 кПа)	
Малые повреждения (разбита часть остекления) (3	
кПа)	

Расчетная часть

Исходные данные таблица 2:

На основании изученной литературы (нормативная и периодическая) выбраны исходные доаварийные данные, представленные в таблицах.

Таблица 2 – исходные данные			
Наименование	Дано	Наименование	Дано
Наименование вещества: Бензин			

Объект разрушения: Сырьевая емкость			
51,3			
75			
разруше	ение		
5	Удельная теплота сгорания	4,52*10 ⁶	
	газа, Q _o , Дж/кг		
	SU		
28,86	Температура вспышки	-43	
	паров, Т _{всп} , ⁰ С		
0,71	Расстояние от очага пожара,	30,0	
	L_{ϕ} , M		
22,41	Среднеповерхностная	60	
	плотность теплового		
	излучения, E_{ϕ} , к B т/м 2		
115	Давление насыщенных	490.33	
	паров, Р _н , кПа		
1,67	Удельная теплота сгорания	4184	
	<u> </u>		
	1		
44800	Время с начала аварии, Тав,	3600	
	сек.		
20	Коэффициент учитывающий	1	
	скорость ветра и		
	температуру N _к		
	51,3 75 разруше 5 28,86 0,71 22,41 115 1,67 44800	51,3 разрушение 5 Удельная теплота сгорания газа, Q ₀ , Дж/кг 28,86 Температура вспышки паров, Т _{всп} , ⁰ С 0,71 Расстояние от очага пожара, L _ф , м 22,41 Среднеповерхностная плотность теплового излучения, E _ф , кВт/м 115 Давление насыщенных паров, P _н , кПа 1,67 Удельная теплота сгорания тротила, Q _т , кДж/кг 44800 Время с начала аварии, Т _{ав} , сек. 20 Коэффициент учитывающий	

Параметры характеризующие пожарную опасность

Объем разлившегося нефтепродукта, м ³	$V_{\rm HII} = 0.8*M_{ m Beni}$	40,7
Диаметр окружности свободного разлива, м	$S_{p} = \frac{\pi * d^{2}}{4}$	32,2

Площадь разлития всего объема жидкости,м ²		814,9
Интенсивность испарения кг / сек * м ²	$I_p = 10^{-6} * {}^{\eta} * \sqrt{M_{ m M}} * p_{ m m}$	5,26*10
Расчетная продолжительность времени полного испарения ГЖ, мин	$T_r = M_{ ext{вещ}} * rac{1000}{(I_p * S_p)}$	6727,8
Масса паров, испарившихся с поверхности разлива, кг	$M_p = w * S * T_{ab}$	15431,5
Плотность паров ГЖ, кг/ м ³	$P_{\pi} = \frac{M_{\text{M}}}{[V_o * (1 + 0.00367 * t^{\circ})]}$	4,78
Приведенная масса паров, кг	$M_{\rm np} = 0.1 * \left(\frac{Q_{\rm cr}}{Q_{\rm o}}\right) * M_p$	15294
Радиус зоны загазованности, м	$X_{ m HKRIP} = 3.2 * \left(\frac{T_{ m av}}{1440}\right)^{1/2} * \left(\frac{P_{ m H}}{C_{ m HKRIP}}\right)^{0.8} * \left[\frac{M_{ m p}}{(P_{ m H}*P_{ m H})}\right]^{0.33}$	698,4
Диаметр факела от пожара, м	$D_p = \left(\frac{4 * S_p}{3,14}\right)^{0.5}$	15,7
Коэффициент облученности между факелом пламени и облучаемым объектом	$F_{o6n} = \left[\left(\frac{D_p}{2} \right)^2 + \frac{L_{\Phi}}{\left(\left(\frac{D_p}{2} \right)^2 L_{\Phi}^2 \right)^{1.5}} \right] * \left[1 - 0.058 \ln(L_{\Phi}) \right]$	0,00246
Плотность теплового излучения факела на расстоянии Lф, кВт/м ²	$Q_{ m oбn} = E_{ m \phi} * F_{ m oбn}$	0,1476

Параметры характеризующие взрывную опасность

Радиус зоны тяжелых поражений людей, R ₁ , м		68,3
Радиус зоны порога поражений людей, R ₅ , м		898,1
Радиус зоны полных разрушений при взрыве облака ТВС, R1, м		68,3
Радиус зоны сильных разрушений при взрыве R_{i} облака ТВС, R2, м	$n = K_n * \frac{\left(0.45 * M_p\right)^{0.33}}{\left[1.1.\left(7066\right)^2\right]^{1/6}}$	100,6
Радиус зоны средних разрушений при взрыве облака ТВС, R3, м	$\left[\begin{smallmatrix}1+\left(\overline{M_p}\right)\end{smallmatrix}\right]$	172,4
Радиус зоны умеренных разрушений при взрыве облака ТВС, R4, м		502,9
Радиус зоны слабых разрушений при взрыве облака ТВС, R5, м		898,1
Избыточное давление при избытке облака ТВС на расстоянии R1, кПа	$P_n = P_A * \left[0.8 * \frac{M_{\pi p}^{0.33}}{R_n} + 3 * \frac{M_{\pi p}^{0.66}}{R_n^2} + 5 * \frac{M_{\pi p}}{R_n^3} \right]$	61,6
Избыточное давление при избытке облака ТВС на расстоянии R2, кПа		45,5
Избыточное давление при избытке облака ТВС на расстоянии R3, кПа		17,7
Избыточное давление при избытке облака ТВС на расстоянии R4, кПа		4,6
Избыточное давление при избытке облака ТВС на расстоянии R5, кПа		2,2

Эколого-экономический ущерб

Экологический ущерб

Экологический ущерб, рекомендуется определять как сумму ущербов от различных видов вредного воздействия на объекты окружающей природной среды.

$$\Pi_{3KOJ} = 3_a + 3_b + 3_{II} + 3_6 + 3_0$$

Определение размера компенсационных выплат за загрязнение атмосферного воздуха:

$$\Im_a = 5*K_{\text{\tiny H}}*C_a*M_p = 5*85*129,4*15431,5=848572$$
 руб,

где K_{μ} – коэффициент индексации платы за загрязнение окружающей среды в связи с изменением уровня цен на природоохранные мероприятия;

 C_a — ставка платы за выброс одной тонны углеводородов в атмосферу в пределах установленного лимита;

M_p– масса испарившихся углеводородов нефтепродукта, т,

Ущерб считается как сверхлимитный выброс, поэтому используется коэффициент равный 5.

Экономический ущерб

Экономический ущерб от аварий на опасных производственных объектах может быть выражен в общем виде формулой:

$$\Pi_a = \Pi_{\Pi\Pi} + \Pi_{\Pi a} + \Pi_{C9} + \Pi_{HB} + \Pi_{9KO\Pi} + \Pi_{BTP}$$

Расчет экономического ущерба от безвозвратных потерь нефтепродукта:

$$Y_{6\pi} = M_{6\pi} * \coprod_{TOH} = 28,86*44500 = 1284270 \text{ py6},$$

Где $M_{\delta\pi}$ – масса безвозвратно потерянного нефтепродукта;

Цтон – цена одной тонны нефтепродукта.

ЗАКЛЮЧЕНИЕ

На основании проведенных расчетов сделаны следующие выводы:

1. Установлены и рассчитаны параметры, характеризующие пожарную опасность. Найдено, что:

Площадь разлития всего объема жидкости = $192,375 \text{ м}^2$

Радиус окружности разлива = 4,827 м

Масса паров, испарившихся с поверхности разлива = 575,682 кг

Диаметр факела от пожара = 734,854 м

Радиус зоны загазованности = 15,654 м

Плотность теплового излучения факела на расстоянии 30 м = 0,13161 кВт/м²

- 2. Установлены и рассчитаны параметры, характеризующие взрывную опасность. Показано, что при заданных исходных условиях, поражающие факторы достигают следующих границ: R= 70,3 м зона тяжелых поражений людей и полных разрушений при взрыве облака ТВС , R= 924,5 м зона порога поражений людей и слабых разрушений при взрыве облака ТВС.
- 3. Частичный экологический ущерб, возникший от загрязнения атмосферного воздуха, составил 848 572 руб.
- 4. Частичный экономический ущерб от безвозвратных потерь нефти составил 1 284 270 руб.
- 5. Разработаны мероприятия по повышению безопасности объекта и снижения риска возникновения ЧС.