МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра аналитической химии и химической экологии

Экспресс-контроль ионов Fe(II) и Fe(III) в сточных водах

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента (ки)	4	курса	441	группь	I				
направления 20.03.01 «Техносферная безопасность»									
		Ин	ститута хи	ІМИИ					
			<u>-</u>	Мирболатов	 зны				
				<u> </u>					
Научный руково	одитель								
доцент, к.	X.H.				И.В. Косырева				
должность, уч. ст.	, уч. зв.	I	подпись, дата		инициалы, фамилия				
Заведующий кас	федрой								
зав.каф. д.х.н.	, доцент	·			Т.Ю. Русанона				
должность, уч. ст., уч.	3В.		подпись	, дата	инициалы, фамилия				

Введение

Загрязнение окружающей среды представляет собой глобальную проблему экологии, которую регулярно обсуждают в новостях и научных кругах. Широкого внимания заслуживает загрязнение воды, так как ее роль - это участие в процессе обмена всех веществ, которые являются основой любой жизненной формы.

Рост городов, бурное развитие промышленности, интенсификация сельского хозяйства, значительное расширение площадей орошаемых земель, улучшение культурно-бытовых условий и ряд других факторов все больше усложняет проблемы обеспечения водой. Увеличения расходования воды промышленностью связано с ростом водоёмкости производства, то есть увеличение расхода воды на единицу продукции. Так на производство 1 тонны хлопчатобумажной ткани фабрики расходуют около 250 м³ воды, а на производство 1 тонны синтетического волокна — 2590 — 5000 м³. Много воды требуется химической промышленности и цветной металлургии. Потребности в воде огромны и ежегодно возрастают. Ежегодный расход воды на земном шаре по всем видам водоснабжения составляет 3300-3500 км³. При этом 70% всего водопотребления используется в сельском хозяйстве.

Для контроля качества вод, измеряют целый ряд показателей, среди которых: химические - рН, окисляемость, ХПК, БПК, нефтепродукты, содержание тяжелых металлов и др.; физические – цветность, мутность, вкус и др.; биологические содержание возбудителей заболеваний, кишечных палочек, цисты лямблий лактозоположительных ДD. сегодняшний день тяжелые металлы занимают второе место по степени опасности и в перспективе могут стать более опасными в связи с их широким использованием в промышленном производстве. Стоит со всей серьезностью отнестись к безопасности на металлургических предприятиях, ведь от этого будет зависеть безопасность окружающей среды.

Тяжелые металлы, широко применяемые в промышленности, накапливаются в живых организмах через сброс промышленных сточных вод в

водоемы. Многие металлы образуют стойкие органические соединения, и хорошая растворимость этих комплексов способствует миграции тяжелых металлов в природе.

К основным поллютантам из списка тяжелых металлов, которые необходимо определять в природных водах для оценки ее качества, относят некоторые ионы: Fe^{2+} , Fe^{3+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Mn^{2+} , Al^{3+} .

Актуальна разработка методик определения различных токсикантов в объектах окружающей среды. Одними из приоритетных загрязнителей объектов окружающей среды, являются соединения Fe(II) и Fe(III), которые оказывают существенное влияние на качество различных типов вод (ПДК = 0.3 мг/л, ПДК $_{\text{обш}} = 1 \text{ мг/л}$).

В настоящее время для аналитического контроля качества различных типов вод широко применяют тест-методы. Популярность в тест-методах анализа различных объектов является следствием постоянно растущих запросов экспрессного и простого определения компонентов пробы на месте («on-site»). Для разработки надежных, чувствительных и селективных тест-методов используют достижения классической аналитической химии (реакции и реагенты). Однако ещё более важным является поиск новых подходов к изучению и разработке данного метода анализа.

Целью работы является разработка методик экспресс-контроля ионов Fe (II), Fe (III) и суммы в сточных водах предприятия ООО «Саратоворгсинтез».

Структура работы. Бакалаврская работа общим объемом 60 страниц машинописного текста состоит из введения, двух основных глав: 1 раздел – литературный обзор; 2 раздел – экспериментальная часть (4 подраздела); 3 раздел – сравнение результатов и заключения.

Практическая значимость: разработка методики определения ионов железа 2,3 и суммы, как дополнительный при анализе сточной воды предприятия ООО «Саратоворгсинтез»

Основное содержание работы

Первый раздел — литературный обзор по методам определения Fe(II) и Fe (III) и их суммы в воде, методы очистки от железа, по документам оценки негативного влияния железа на окружающую среду и организм человека.

Очистка воды от соединений железа проводится методами такими, как окисление, католическое окисление с последующей фильтрацией, ионным обменом, мембранным, дистилляцией.

Из гигиенического норматива 2.1.5.1315-03 Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования говорится, что ПДК железа (включая хлорное железо) равно 0,3 мг/л. Железо относится к 3 классу опасности. Порог токсичности железа для человека составляет в среднем 200 мг/сутки.

Второй раздел – экспериментальная часть, включает в себя следующие разделы и подразделы:

- 2 Экспериментальная часть
- 2.1 Реагент и аппаратура
- 2.2 Методики приготовления растворов
- 2.3 Определение в сточной воде предприятия ООО «Саратоворгсинтез» общего содержания железа с помощью атомно-абсорбционной спектроскопии
- 2.3.1 Отбор и консервирование проб. Подготовка аналитической пробы для определения общего содержания железа
 - 2.3.2 Определение общего содержания железа в пробе на «МГА-915МД»
- 2.4 Тест-определение железа в сточной воде предприятия ООО «Саратоворгсинтез»
- 2.4.1 Визуально-колориметрическое изучение реакции взаимодействия ионов Fe(II), Fe(III) и ∑Fe(II)+Fe(III) с сульфосалициловой кислотой, галловой кислотой и тиоционатом аммония на поверхности индикаторной бумаги

- 2.4.2 Цветометрическое определение ионов Fe (II) с помощью индикаторных бумаг на основе иммобилизованной сульфосалициловой кислотой в присутствии и отсутствие ПАВ
- 2.4.3 Цветометрическое определение ионов Fe (III) с помощью индикаторных бумаг на основе иммобилизованной галловой кислотой в присутствии и отсутствие ПАВ
- 2.4.4 Цветометрическое определение ионов \sum Fe(II)+Fe(III) с помощью индикаторных бумаг на основе иммобилизованной тиоционат аммония в присутствии и отсутствие ПАВ

Раздел 3 Сравнение результатов определения ионов общего железа с помощью атомно-абсорбционного метода и тест-метода

Определение в сточной воде предприятия ООО «Саратоворгсинтез» общего содержания железа с помощью атомно-абсорбционной спектроскопии

На производстве ООО «Саратоворгсинтез» в Санитарной лаборатории нами проведен анализ сточной воды на Атомно-абсорбционном спектрометре «МГА-915МД». Анализируемая вода была из смешанного стока, который состоял из Промышленного стока сточной воды и хозбытового стока. Они в свою очередь прошли предварительную очистку от крупных механических примесей, после чего они поступают в лоток смешанного стока. Затем эти стоки перемешиваются с воздухом, который подаётся от нагнетателем. Далее воду отбирали согласно ГОСТу и отдали на анализ в Санитарную лабораторию.

Градуировочная характеристика представляет собой зависимость аналитического сигнала от массы элемента.

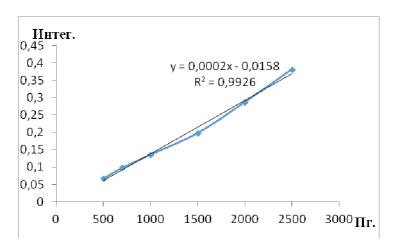


Рисунок 1- Градуировочный график зависимости аналитического сигнала от массы элемента.

После получения градуировочной зависимости, мы вводим в прибор анализируемую пробу объемом 15 мм 3 , в данном случае вода смешанного стока. После всех прохождения стадий в аппарате программное обеспечение делает расчет и выдает результат. В нашем случае результат был такой, концентрация Fe общего составила 0.865 мг/л (0.87).

Тест — методика определения ионов Fe(II), Fe(III) и $\sum Fe(II)+Fe(III)$ с сульфосалициловой кислотой, тиоционатом аммония и галловой кислотой на поверхности индикаторной бумаги.

Визуально-колориметрическое изучение реакции взаимодействия ионов Fe(II), Fe(III), ∑Fe(II)+Fe(III) с сульфосалициловой кислотой, галловой кислотой и тиоционатом аммония на поверхности бумаги

Для изучения реакции взаимодействия сульфосалициловая кислота с ионами Fe(II) предварительно были приготовлены индикаторная бумага и растворы соли железа (II) различной концентрации от 10^{-3} до $5 \cdot 10^{-5}$ М. Реакцию проводили в среде ацетатно-аммиачного буферного раствора с рH=5. Контрольный образец индикаторной бумаги не содержал ионы металла. После нанесения пробы, индикаторную бумагу высушивали на воздухе, при температуре 21°C и фиксировали окраску визуально и цветометрически.

Визуально-колориметрическое определение железа (II) в присутствии $O\Pi$ -10(1%) при pH=5

В системе Fe (II) — сульфосалициловая кислота — ОП-10 (1%) в ацетатно-аммиачном буферном растворе pH=5, наблюдалось лучшее закрепления комплексного соединения на поверхности индикаторной бумаги. Также в анализируемой пробе воды было определено Fe (II) $C=10^{-4}$ моль/л.

Предварительно установлено, что к аналитическому эффекту, состоящему в углублении окраски аналитической формы соответствующего комплекса железа, а именно к улучшению контрастности, приводят лишь неионные ПАВ.

Визуально - колориметрическое определение ионов Fe(III) с помощью индикаторных бумаг на основе иммобилизованной галловой кислотой в присутствии и отсутствие ПАВ

Для изучения реакции взаимодействия галловой кислотой с ионами Fe^{3+} предварительно были приготовлены индикаторная бумага и растворы соли железа (III) различной концентрации от 10^{-3} до $5 \cdot 10^{-5}$ М. Реакцию проводили в среде ацетатно-аммиачного буферного раствора с pH=5.

Контрольный образец индикаторной бумаги не содержал ионы металла. После нанесения пробы, индикаторную бумагу высушивали на воздухе, при температуре 21°C и фиксировали окраску визуально и цветометрически.

Визуально-колориметрическое определение железа (III) в присутствии ДДС после ККМ при pH=5

Образцы
$$C_{Fe(III)}$$
 $10^{-3} M$ $5 \cdot 10^{-4} M$ $10^{-4} M$ $5 \cdot 10^{-5} M$ $10^{-5} M$ контр проба $H\Gamma OC = 10^{-4} M$

 $H\Gamma OC = 10^{-4}M$ ДОС от $10^{-4} - 5 \cdot 10^{-5}$ $H\Gamma OC_{\text{пробы}} = 10^{-4}$

В системе Fe (III) – галловая кислота – ДДС после ККМ в ацетатноаммиачном буферном растворе pH = 5, наблюдалось лучшее закрепления комплексного соединения на поверхности индикаторной бумаги. В анализируемой пробе воды было определено Fe (III) C=10⁻⁴ моль/л.

Визуально - колориметрическое и цветометрическое определение ионов \sum Fe(II)+Fe(III) с помощью индикаторных бумаг на основе иммобилизованного тиоцианата аммония в присутствии и отсутствии ПАВ

Для изучения реакции взаимодействия тиоционата аммония с ионами Fe предварительно были приготовлены индикаторная бумага и растворы соли Σ Fe(II)+Fe(III) различной концентрации от 10^{-3} до $5\cdot 10^{-5}$ М. Реакцию проводили в среде ацетатно-аммиачного буферного раствора с pH=5.

Контрольный образец индикаторной бумаги не содержал ионы металла. После нанесения пробы, индикаторную бумагу высушивали на воздухе, при температуре 21°C и фиксировали окраску визуально и цветометрически.

Визуально-колориметрическое определение Σ Fe(II)+Fe(III) в присутствии ЦПХ после ККМ при рH=5

Образцы
$$C_{\Sigma Fe}$$
 $10^{-3} M$ $5 \cdot 10^{-4} M$ $10^{-4} M$ $5 \cdot 10^{-5} M$ $10^{-5} M$ контр $npo 6a$

 $H\Gamma OC = 10^{-4}M$ ДОС от $10^{-4} - 5 \cdot 10^{-5}$ $H\Gamma OC_{\text{пробы}} = 10^{-4}$

В системе \sum Fe(II)+Fe(III) – NH₄SCN – ЦПХ (после ККМ) в ацетатно-аммиачном буферном растворе pH = 5, наблюдалось лучшее закрепления комплексного соединения на поверхности индикаторной бумаги. В смешанном водостоке OOO «Саратоворгсинтез» концентрация общего железа составила 10^{-4} моль/л.

Цветометрическое определение ионов железа (II) сульфосалициловой кислотой при pH=5.

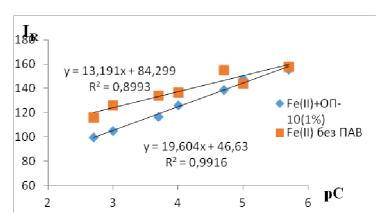


Рисунок 2 - Зависимость яркости канала R от логарифма концентрации ионов Fe(II) в системе $Fe(II)(C=10^{-4})$ + сульфосалициловая кислота 0.1M в присутствии и отсутствии ΠAB (pH=5)

На рисунке 3 представлена зависимость I - pC для наилучшего канала R и коэффициенту регрессии $R^2 = 0.8993$ $Fe(II)(C=10^{-4})$ для системы $Fe(II)(C=10^{-4})$ сульфосалициловая 0.1M.Для системы кислота сульфосалициловая кислота $(0.1M) + O\Pi-10 (1\%) R^2 = 0,9916$ однако данный цветности рекомендуется применять параметр для количественного определения Fe(II), так как R^2 более выше, чем без ΠAB .

По уравнению градуировочного графика рассчитываем концентрацию Fe(II) анализируемой воды:

Пересчитываем из формулы концентрации pC=-lgC. В результате концентрация пробы воды равна $1,1\cdot 10^{-4}$ моль/л.

В анализируемой пробе воды ООО «Саратоворгсинтез» было найдено Fe(II), концентрация которого по уравнению градуировочного графика составила $1,1\cdot 10^{-4}$ моль/л.

Цветометрическое определение ионов Fe(III) в системе галловой кислоты в присутствии и отсутствии ПАВ.

Цветометрическое определение Fe(III) в системе Fe(III) –галловая кислота – в присутствии и отсутствии ΠAB .



Рисунок 3 - Зависимость яркости канала B от логарифма концентрации ионов Fe(III) в системе Fe(III) $(C=10^{-4})$ —галловая кислота $(C=8\cdot10^{-3})$ в присутствии и отсутствии ΠAB .

На рисунке 5 представлена зависимость I - pC для наилучшего канала В по яркости (I = 200), контрастности (Δ I = 20), наибольшему значению чувствительности ($tg\alpha$ = 19). Данный параметр цветности рекомендуется применять для количественного определения Fe(III) в присутствии ДДС после ККМ, так как R^2 = 0.9903 в системе с ПАВ.

По уравнению градуировочного графика рассчитываем концентрацию Fe(III) анализируемой воды. Пересчитываем из формулы концентрации pC=-lgC. В результате концентрация пробы воды равна 1 · 10 - 4 моль/л.

Цветометрически в пробе воды ООО «Саратоворгсинтез» была определена концентрация ионов железа (III) = $1 \cdot 10^{-4}$ моль/л

Цветометрическое определение $\sum Fe(II) + Fe(III) + в$ системе – $\sum Fe(II) + Fe(III) + NH_4SCN\ 0.1 M\ в$ присутствии и отсутствии ΠAB .

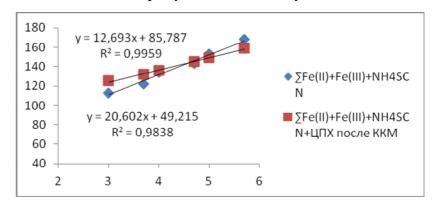


Рисунок 4 - Зависимость яркости канала R от логарифма концентрации $\sum Fe(II) + Fe(III)$ в системе $\sum Fe(II) + Fe(III)$ ($C=10^{-4}$) + NH_4SCN IM в присутствии и отсутствии ΠAB ацетатно-аммиачный буфер (pH=5)

На рисунке 7 представлена зависимость I - pC для наилучшего канала R и коэффициенту регрессии R^2 = 0,9838 для системы $\sum Fe(II) + Fe(III)(C=10^{-4}) + NH_4SCN 0.1M$ без ПАВ. Однако данный параметр цветности не рекомендуется применять для количественного определения Fe(II) + Fe(III) так как $R^2 < 0.9$.

Для системы $\sum Fe(II)+Fe(III)(C=10^{-4})+NH_4SCN+U\Pi X$ после ККМ коэффициент регрессии $R^2=0.9959$ Данный параметр цветности рекомендуется применять для количественного определения $\sum Fe(II)+Fe(III)$, так как коэффициент регрессии больше, чем с NH_4SCN .

Полученные линейные для системы реагент + ПАВ + растворитель могут быть использованы для разработки визуально-коллориметрического и цветометрического тест - определения ионов железа (II) и железа (III) и их суммы.

РАЗДЕЛ 3. Сравнение результатов определения общего железа с помощью атомно-абсорбционного метода и тест-метода

С помощью AAC метода результат содержания железа в воде равен $0.865 \text{ мг/л} = 1.5 \cdot 10^{-4} \text{ моль/л}.$

Таблица 1 - Тест-определение Fe(II), Fe(III), Fe(III)+Fe(III) с помощью индикаторной бумаги с имобилизованными сульфосалициловой, галовой кислотами и тиоционатом аммония в присутствии и отсутствии ПАВ (визуально-коллометрическое исследование).

Реагент ПАВ	Сульфоса лицилова я кислота на Fe ⁺²	Контроль	Галловая кислота на Fe ⁺³	Контроль	NH ₄ SCN Ha ∑Fe(II)+ Fe(III)	Контроль
ОП-10 (1%)	No.					
ДДС после ККМ						

PERSONAL PROPERTY AND ADDRESS OF THE PERSONAL PR	
после ККМ	
Без ПАВ	

Как видно из таблицы 1 возможно-визуально коллометрическое определение Fe(II) с помощью системы сульфосалициловая кислота + $O\Pi$ -10 (1%), Fe(III) с помощью системы галловая кислота + ДДС после KKM, $\Sigma Fe(II)+Fe(III)$ с помощью системы тиоционат аммония + ΠX после KKM.

Из таблицы 1 была рассчитана относительной погрешность визуальноколорометрического исследования для \sum Fe(II)+Fe(III) в системе тиоционат аммония + ЦПХ после ККМ:

Найденная АСС концентрация общего Fe равна $1,5\cdot 10^{-4}$ моль/л. Найденная тест-методом равна $1\cdot 10^{-4}$ моль/л. Тогда относительная погрешность равна:

$$\frac{1.5 * 10^{-4} - 1 * 10^{-4}}{1.5 * 10^{-4}} * 100\% = 33\%$$

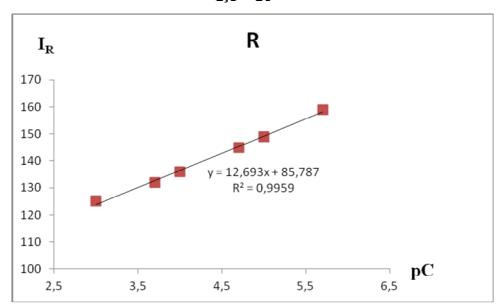


Рисунок 5 - Зависимость яркости каналов R от логарифма концентрации ионов в системе \sum Fe(II)+Fe(III)(C=10⁻⁴) + NH₄SCN +ЦПХ после ККМ

Из рисунка 5 видно, что для экспресс-контроля содержания $\sum Fe(II) + Fe(III)$ можно применять данную систему, так как $R^2 > 0.9$.

Была рассчитана концентрация по уравнению из рисунка 8 для системы - $\Sigma Fe(II) + Fe(III)$ +NH₄SCN + ЦПХ после ККМ. Пересчитываем из формулы концентрации pC=-lgC. В результате концентрация пробы воды равна 1,2 $^{\circ}$ 10 $^{\circ}$ моль/л.

После чего рассчитываем относительную погрешность для цветометрического исследования. Найденная АСС концентрация общего Fe равна $1,5^{\circ}10^{-4}$ моль/л. Найденная тест-методом равна $1,20^{\circ}10^{-4} \pm 0,05^{\circ}10^{-4}$ моль/л. Тогда относительная погрешность равна:

$$\frac{1.5 * 10^{-4} - 1.15 * 10^{-4}}{1.5 * 10^{-4}} * 100\% = 23\%$$

Данные тест-средства подтверждают результат атомно-адсорбционного метода с погрешностью в пределах 23%. Это говорит о том, что с помощью данного метода и разработанной нами методики, можно дополнительно делать экспресс анализ сточной воды (валловый экспресс-контроль). Рекомендуем данную методику, так как она позволяет находить концентрацию общего железа в воде в пределах 10^{-3} - $5\cdot10^{-5}$ М. Плюсы данного метода в том, что он позволяет определять быстро «на месте», так же не требует затраты времени и материальных средств.

ЗАКЛЮЧЕНИЕ

- 1. В данной работе был проведен анализ данных литературы по определению Fe(II) и Fe (III) и их суммы в воде глубиной 20 лет. (66% фотометрический, 17% тест-метод, 7% атомно-абсорбционный, 6% титриметрический, 4% атомно-эмиссионный спектральный анализ). Проведен анализ документов по оценке негативного влияния железа на человека и его токсичности (ПДК 0,3мг/л, ЛД-250мг.)
- 2. Изучены способы иммобилизации галловой кислоты (C= время температура), тиоционата аммония и сульфосалициловой кислоты на бумажном носителе. Выбраны оптимальные условия взаимодействия иммобилизованных реагентов с ионами железа (II), (III) и их суммы: $C_R \ 1 \cdot 10^{-4} \ M$, время 10 минут, рH=5 (ацетатно-аммиачный буферный раствор)

- 3. Атомно-абсорбционным методом найдено содержание общего железа в воде смешанного водостока предприятия ООО «Саратоворгсинтез» $C=0.865 \ \text{мг/л}$.
- 4. Показана возможность визуально-колориметрического (НГОС = 10^{-4}) и цветометрического тест определения ионов железа (II, III) и их суммы с иммобилизованным реагентами; Лучшими результатами для железа (II) является система сульфосалициловая кислота +ОП-10 (1%) (Y= 19,604 x+46, 63, НГОС = $5\cdot10^{-4}$), для железа (III) галловая кислота + ДДС после ККМ (Y= 22,186 x+19,99, НГОС = $5\cdot10^{-4}$), для Σ Fe(II)+Fe(III) тиоцинат аммония + ЦПХ после ККМ.
- 5. Визуально-колорометрически в воде смешанного водостока предприятия ООО «Саратоворгсинтез» было определено содержание железа (II) $C=1,1\cdot 10^{-4}$ моль/л, железа (III) $C=1\cdot 10^{-4}$ и $\sum Fe(II)+Fe(III)$ $C=1,2\cdot 10^{-4}$ моль/л. Относительная погрешность определения содержания $\sum Fe(II)+Fe(III)$ составляет 33%.
- 6. Цветометрически в воде смешанного водостока предприятия ООО «Саратоворгсинтез» было определено содержание железа (II) $C=1,10\cdot10^{-4}\pm0,03\cdot10^{-4}$ моль/л, железа (III) $C=1,00\cdot10^{-4}\pm0,05\cdot10^{-4}$ моль/л и Σ Fe(II)+Fe(III) $C=1,20\cdot10^{-4}\pm0,05\cdot10^{-4}$ моль/л. Относительная погрешность определения содержания Σ Fe(II)+Fe(III) составляет 23%.