МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра материаловедения, технологии и управления качеством

ВЛИЯНИЕ ОДНООСНОГО СЖАТИЯ НА ПРОВОДИМОСТЬ КОМПОЗИТА ТЕХНИЧЕСКИЙ УГЛЕРОД - ПОЛИМЕР

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

магистранта 2 курса 203 группы направления 22.04.01 «Материаловедение и технологии материалов» профиль «Нанотехологии, диагностика и синтез современных материалов» факультета нано- и биомедицинских технологий

Козлова Владимира Александровича

Научный руководитель профессор,

д.т.н., профессор

должность, уч. степень, уч. звание

подпись, дата

В.В. Кисин

инициалы, фамилия

Зав. кафедрой профессор, д.ф.-.м.н.

должность, уч. степень, уч. звание

подпись, дата

С.Б. Вениг инициалы, фамилия

Саратов 2019

Введение. Актуальность данной работы обуславливается тем, что современная быстроразвивающаяся техника требует все более экономичных, обладающих быстрым откликом и простых в изготовлении датчиков давления. Для разработки таких датчиков требуются материалы, обладающие сложными, порой противоречивыми свойствами. В течение последних двух десятилетий исследования нанокомпозитов привели к разработке материалов со свойствами, которые намного превосходят свойства не только исходных материалов, но и обычных микрокомпозитов. Такими материалами являются пьезорезистивные композиты, которые находят применение В авиации, космонавтике, робототехнике [1-3]

В данной работе рассмотрен композит полимер-углерод, зависимость его проводимости от наполнения углеродом, и от деформации при одноосном сжатии. Новизна данной работы состоит в исследовании электропроводящих свойств композита силиконовый компаунд-технический углерод.

Цель работы – исследование проводимости и чувствительности материала к приложенному давлению, зависимости проводимости от концентрации проводника, а также определение величины гистерезиса.

Для достижения поставленной цели должен быть решен ряд задач:

- Создание автоматической измерительной установки, минимизирующей влияние оператора на воспроизводимость результатов измерения;
- Разработка технологии изготовления образцов из композита с различными концентрациями наполнителя.
- 3. Определение основных параметров установки.
- Измерение электрического сопротивления образцов и его преобразование в проводимость и чувствительность.

Дипломная работа состоит из введения, трех разделов: теоретического, создания и обоснования измерительной установки, а также выбора материалов (практического), измерения параметров материалов на установке и обсуждения результатов (практического), заключения, и списка использованных источников.

Дипломная работа занимает 31 страницу, имеет 17 рисунков, 5 формул и 4 таблицы.

Обзор составлен по 25 информационным источникам.

Во введении рассматривается практическая значимость работы, её новизна, формулируется цель и выдвигаются задачи для её достижения.

Первый раздел (теоретический) представляет собой обзор литературы.

Во втором разделе (практическом) рпедставлено обоснование выбора материалов для композита, описана измерительная установка и принцип её работы.

Третий раздел (практический) содержит результаты измерения параметров композитов и их обсуждение.

Основное содержание работы

Нанокомпозиты

Нанокомпозиты представляют собой гибридные материалы, в которых неорганический наполнитель имеет по меньшей мере один размер в нанометровой шкале. Наноразмерная дисперсия наполнителя внутри полимерных матриц приводит к огромным межфазным контактам между органической и неорганической фазами, что в свою очередь порождает межфазный материал с совершенно иной морфологией, а также обладает свойствами, которые превосходят свойства фазы объемного полимера. В результате этого значительные изменения в свойствах нанокомпозитов могут проявляться при гораздо более низких концентрациях наполнителя [4].

Классификации датчиков давления

Можно выделить несколько различных классификаций датчиков давления. Среди них классификации на основе методов преобразования давления, задачи, и механических свойств.

По методам преобразования давления датчики делятся на тензометрические, пьезорезистивные, ёмкостные, оптические, магнитные, пьезоэлектрические, ультразвуковые, гидравлические [3].

3

Тактильные сенсоры

Тактильные датчики – это устройства, предназначенные для обнаружения контакта между предметом и поверхностью, на которой расположен датчик, и (или) определения формы этого предмета. Современное автоматизированное производство, робототехника, транспорт, строительство, медицина и медицинская промышленность используют многоэлементные датчики для определения характеристик поверхностей, создающих давление. С помощью тактильных датчиков получают информацию о величине давления и форме поверхности, которая давление оказывает [5]

В большинстве случаев контактирующая поверхность датчика должна обладать способностью принимать различную форму (например, форму руки робота), это свойство есть у гибких Т-сенсоров, которые выдерживают многократные изгибы.

Материалы для композита

Для изготовления образцов был выбран композит силиконовый компаунд-технический углерод. Компаунд «Пэнтэласт-710А» - каучук синтетический термостойкий низкомолекулярный полидиметилсилоксановый с оловоорганическим катализатором «Пента-18П» [6]. Исходные вещества – жидкости, смешиваемые в пропорции 20:1 соответственно, после чего в течение 24 часов происходит отвержение.

Технический углерод (ТУ) - высокодисперсный аморфный углеродный продукт. Была сделана микрофотография технического углерода на СЭМ MIRA II TESCAN. Средний размер частиц составил 33 ± 12 нм.

4

Рисунок 1 – Микрофотография ТУ в 200000-кратном увеличении

Рисунок 2 – Диаграмма распределения частиц ТУ по размерам

Изготовление образцов

Для приготовления композита был взят кремнийорганический компаунд ПэнтЭласт-710А с катализатором Пента-18П и графит, измельчённый напильником. Компаунд и катализатор смешиваются в пропорции 20:1 по объёму соответственно, после тщательного перемешивания герметик взвешивается и к нему добавляется ТУ в концентрациях 1,25, 2,5, 5, 10, 15, 20% по массе.

	Общая масса, г	% ТУ по массе	Macca	Macca	Macca
			навески ТУ	герметика	катализатора
Теория	10	1,25	0,125	9,404	0,470
	10	2,5	0,25	9,285	0,464
	10	5	0,5	9,047619	0,452
	10	10	1	8,571429	0,428
	10	15	1,5	8,095238	0,404
	10	20	2	7,619048	0,380
Практика	10,038	1,220	0,122	9,44	0,475
	9,961	2,520	0,251	9,24	0,470
	10,019	5,013	0,502	9,05	0,466
	10,065	10,054	1,012	8,63	0,423
	9,939	15,161	1,506	8,03	0,402
	10,033	19,965	2,003	7,65	0,380

Таблица 1 – Протокол изготовления образцов

Описание испытательной установки

Измерительная установка состоит из блока питания, блока управления шаговым двигателем SMSD-3.0, пресса, мультиметра Beetech 20T, платы Arduino mini, и компьютера (ПК) (рисунок 8). ПК служит для записи и хранения данных с мультиметра и Arduino, соединение осуществляется через интерфейсы RS-232 и USB соответственно.

Рисунок 3 – Схема устройства пресса

Рисунок 4 – блок-схема измерительной установки

Методика измерений

Измерения проводились при помощи компьютера, который записывал значения сопротивления образца, снятые мультиметром и скорость вращения вала шагового двигателя. Вращение вала шагового двигателя осуществлялось на 8000 шагов, что соответствует 40 мм сжатию пружин при шаге резьбы 1 мм. Скорость вращения двигателя была выставлена на 40 шагов в секунду. Сила сжатия пружины рассчитывается по следующей формуле:

$$\mathbf{F} = \mathbf{k} \cdot \Delta \mathbf{l} \tag{1}$$

После снятия зависимостей рассчитывалась проводимость о:

$$5=1/R$$
 (2)

Результаты и их обсуждение

Полученная зависимость проводимости от силы сжатия представлена на рисунке 14. На данном графике представлены зависимости для пяти образцов с концентрацией ТУ 2,5; 5; 10; 15; 20% по массе соответственно. Из графика видно, что проводимость прямо зависит от концентрации и возрастает с увеличением силы давления. Кривая образца под номером 4 имеет самый большой размах изменения проводимости, пересекая кривую образца 3.

Рисунок 5 – Зависимость проводимости σ от приложенной нагрузки F при сжатии для пяти образцов

Также была получена зависимость проводимости композита от приложенной силы при сжатии и возвращении пружины в обратное положение. На рисунке 6 видно, что при кривые нагружения и разгружения образца отличаются до 32,5%. За величину гистерезиса А было принято отношение модуля разности проводимости при сжатии σ_{np} и разжатии $\sigma_{oбp}$ к проводимости образца при сжатии:

$$A = |\sigma_{np} - \sigma_{o\delta p}| / \sigma_{np}.$$
(3)

Рисунок 6 – Зависимость проводимости σ образца 2 от приложенной нагрузки F при сжатии и возвращении в первоначальное положение пружины

Заключение. В заключении приведены следующие основные результаты:

1. Определен средний размер частиц, который составил 30 нм.

2. Создана автоматическая измерительная установка способная измерять и записывать электрические параметры образцов без помощи оператора, измерена жесткость пружины в установке - k=2371,6 кH/м, разработана технология изготовления образцов.

3. Получены зависимости проводимости от приложенной силы для пяти образцов с различными концентрациями, определено изменение проводимости, наибольшее составило 5000% от начальной проводимости для композита с концентрацией ТУ 15%.

4. Определена чувствительность композита с различными концентрациями, наибольшая составила 12 мСм/Н под нагрузкой 50 Н. Кривые чувствительности для различных образцов сильно отличаются и не поддаются аппроксимации линейными зависимостями.

5. Определен гистерезис при нагружении и разгружении композита с концентрацией 5% ТУ, максимальное значение гистерезиса составило 35%.

Список использованных источников

1 Mahesh V Impact Response Nanophased Polyurethane Foam Core Sandwich Composites / Mahesh V. Hosur // CD Proceedings of the 16th International Conference on Composite Materials, July 8-13, 2007, Kyoto, Japan.

2 Sharp G. Applications of high thermal conductivity composites to electronics and spacecraft thermal design // NASA Technical Reports Server (NTRS), 1990

3 Stassi S. Tactile sensor devices exploiting the tunnelling conduction in piezoresistive composites, PhD thesis// Politecnico di Torino, 2012

4 Abyaneh, M. K Piezoresistivity and mechanical behavior of metal-polymer composites under uniaxial pressure / Abyaneh, M. K et.al. // Journal of Materials Science Research, 2012, №3, p 1-9

5 Новожилов А. Тактильные датчики на полимерных материалах / А. Новожилов, В. Ракитин, А. Сафонов // «Электроника: Наука, Технология, Бизнес», с. 52-64 №2, 2014

6 Долгов О.Н. Кремнийорганические жидкие каучуки и материалы на их основе / Долгов О.Н. и др. // М.: Химия, 1975.