МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра аналитической химии и химической экологии

Ионометрическое определение анионных поверхностноактивных веществ в моющих средствах

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента 4 курс	а <u>421</u> группы		
направления	44.03.01 – «Пед	цагогическое образова	ание»
	<u>И</u> :	нститут химии	
	<u>Буланов</u>	а Георгия Петровича	
Научный руково	дитель		
профессор, д.х.н., профессор			Е.Г. Кулапина
должность, уч. стег	тень, уч. звание	подпись, дата	инициалы, фамилия
Зав. кафедрой			
д.х.н., доцент			Т.Ю. Русанова
должность, уч. стег	тень, уч. звание	подпись, дата	инициалы, фамилия

ВВЕДЕНИЕ

Поверхностно-активные вещества (ПАВ) применяются более чем в 100 отраслях и подотраслях промышленности и сельского хозяйства. Небольшие добавки ПАВ в технологический процесс или получаемый продукт дают большой экономический эффект.

Поверхностно-активные вещества, благодаря своим смачивающим, моющим, диспергирующим, эмульгирующим и другим ценным свойствам. нашли широкое применение в производстве чистящих и моющих средств, фармацевтических препаратов, косметических средствах, каучука, латексов, различных полимеров, текстиля, бумаги, кожи, химических средств для защиты растений, строительных материалах и т.д. Основное направление использования ПАВ — производство синтетических моющих средств (СМС).

Актуальность работы. ПАВ имеет широкое применение в современном мире в технологических процессах, в связи с этим необходимо экспрессное определение анионных ПАВ в моющих средствах.

Целью настоящей бакалаврской работы является определение анионных поверхностно-активных веществ в моющих средствах

Задачи:

Сбор информации о анионных ПАВ и моющих средствах.

Отбор проб моющих средств и дальнейшее изучение их.

Анализ полученных результатов исследований и оценка анионной поверхностной активности веществ.

Составление авторского урока по теме «Синтетические моющие средства» для учеников 10 класса.

Объекты и методы исследования. В работе исследованы синтетические моющие средства.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Поверхностно-активные вещества — большая группа органических длинноцепочных трудноокисляемых соединений с дифильной структурой, диссоциирующихся в воде и обладающих способностью концентрироваться на границе раздела фаз, изменяя их свойства.

По силе токсического действия ПАВ располагаются в ряд:

Токсичность ПАВ

КПАВ – антигистаминные компоненты

КПАВ>АПАВ>НПАВ~Атпав. В водных средствах предельно допустимая концентрация (ПДК) на КПАВ составляет 0,4...2 мг/л, АПАВ – 0,5мг/л, НПАВ и Атпав- 0,05...5 мг/л . Летальная доза (ЛД₅₀)ля КПАВ (четвертичные аммониевые соли) находится в пределах 0,5...5г/кг, для АПАВ – 2...8 г/кг, НПАВ и Атпав- 5...50 г/кг. В объектах окружающей среды СПАВ подвергаются деструкции. Этот процесс ускоряется с повышением температуры, под действием солнечной радиации, ферментов

микроорганизмов, в результате гидролиза. Продукты разрушения СПАВ в

ряде случаев обладают более токсичными свойствами, чем исходные

вещества, например, при гидролизе НПАВ образуют фенолы, при гидролизе

Методы определения синтетических поверхностно активных веществ

Самый часто применяемый метод определения ПАВ — это хроматография. Хроматографические методы применяются для анализа жидких сред: природных, сточных, питьевых вод, биологических жидкостей, средств личной гигиены, синтетических моющих средств, газообразных сред: атмосферного воздуха и воздуха рабочей зоны; твёрдых образцов: осадочных отложений, шламов, почвы, тканей животных и рыбы, кожи человека, пульпы зуба, бумаги, пищевых продуктов.

Спектроскопические методы в настоящее время широко используются при анализе объектов окружающей среды(пруды, колоды, реки, подземные воды) и сточных вод на содержание синтетических поверхностно-активных

веществ, а также для контроля содержания ПАВ в синтетических моющих средствах . Большое количество методик определения АПАВ и КПАВ основано на взаимодействии определённых соединений с противоположно заряженными красителями. Эталонным методом определения ионных поверхностно-активных веществ является двухфазное титрование: анионные ПАВ взаимодействуют с катионными с образованием ионных ассоциатов - незаряженных соединений, которых можно экстрагировать полярными растворителями (четырёххлористыми углеродом, хлороформом или метиленхлоридом). Однако в настоящее время существует тенденция к исключению из лабораторной практики хлорированных растворителей и разработке безэкстакционных методов определения ПАВ.

Для определения СПАВ в сложных смесях возможно применение электрохимических методов анализа, также как прямая потенциометрия и потенциометрическое титрование.

К достоинствам потенциометрического метода можно отнести надёжность, доступность и простоту аппаратуры, отсутствие большого числа операций, экспрессность, а также возможность определения нескольких типов ПАВ с помощью ионоселективных электродов на основе различных электродноактивных компонентов.

Потенциометрические методы применяются в основном дл определения поверхностно-активных веществ в сточных, природных водах, синтетических моющих средствах, катионные ПАВ также определяют в лекарственных препаратах.

Твердо контактный АПАВ селективный электрод. Общие сведения и назначение

Электрод плёночный АПАВ - селективный серии «Вольта» совместно с электродом сравнения (например, ЭВЛ – 1М3.1) и высокоомным преобразователем (например, иономером) предназначен для измерения активности ионов ПАВ (рПАВ) в водных растворах. Электрод применяется в

качестве точного индикаторного инструмента в научных, аналитических и промышленных лабораториях.

Электрод изготавливается в соответствии с ГОСТ 22261 и техническими условиями ТУ 4315-027-27458903-05.

Технические характеристики

Диапазон измерения молярной концентрации от 10^{-5} до 10^{-2} моль/дм³.

Электрическое сопротивление электрода при температуре $(20\pm5)^0$ С не более 50 Мом.

Диапазон рабочих температур от 15^{0} С до 45^{0} С. Рабочая область рН 1-10 ед.рН.

Крутизна электродной функции при температуре $(20\pm5)^0$ С 58 ± 2 мВ/рХ.

Потенциал электрода при выпуске из производства в растворе АПАВ с концентрацией 10^{-3} моль/дм³ при температуре раствора $(20\pm5)^0$ С относительно электрода сравнения хлорсеребряного насыщенного образцового 2-го разряда по ГОСТ 17792 равен (150 ± 50) мВ.

Метод прямой потенциометрии (ионометрии) позволяет быстро, достаточно точно проводить анализ, отличающийся простой пробоподготовки и методики. Потенциометрический метод основан на зависимости э.д.с. элемента (E) от активности определяемого иона.

Для выполнения потенциометрических измерений применяется элемент с переносом:

Аg, AgCl | KCl (нас) исследуемый раствор | мембрана | Графит

Метод потенциометрического титрования позволяет проводить эксперссное определение основного вещества в технических препаратах с высокой точностью. Анализ отличается простотой пробоподготовки СМС и методики их определения. В качестве титранта используется раствор цетилпиридиний хлорида (ЦП).

В основе определения лежит реакция образования малорастворимого соединения с ЦП по следующей схеме:

 $ДДС^{-} + Ц\Pi^{+} = Ц\Pi^{+}ДДC^{-}$

Определение АПАВ в моющих средствах Ariel

Экспериментальные данные по определению суммарного содержания АПАВ в образце ARYEL представлены в таблице 1, на рисунке 1 зависимость ЭДС от концентрации ДДС.

 Таблица 1-Эксперементальные данные для построения

 электродной функции

рСдде	ЭДС, мВ
2	37
3	92
4	148
5	205
6	232

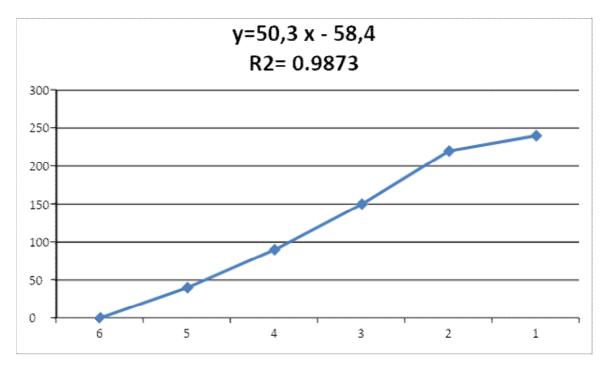


Рисунок 1- Зависимость ЭДС от концентрации ДДС

На рисунках 2 (а, б.) представлены кривые потенциаметрического титрования моющего средства.

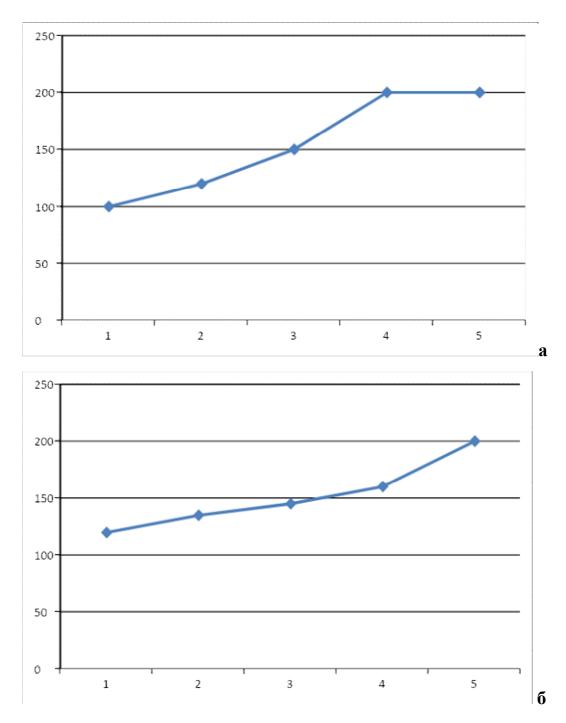


Рисунок 2- Кривые потенциаметрического титрования аликвотных частей моющего средства «Ariel» цетилпиридиния: а-3 мл, б-4 мл.

На рисунках 3 (а, б, в) представлены кривые потенциаметрического титрования моющего средства.

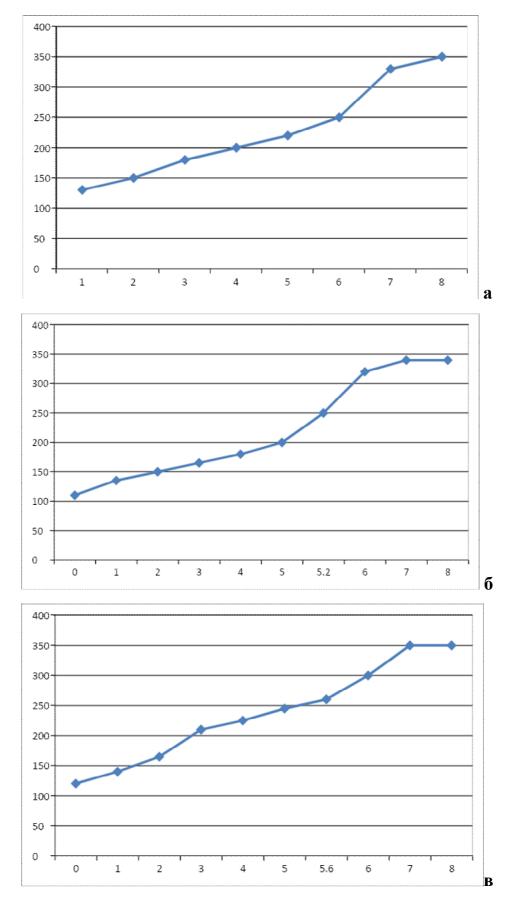


Рисунок 3 - (a,б,в) кривые потенциаметрического титрования моющего средства «Persil» V=2 мл (три параллельных определения).

Авторский урок «Синтетические моющие средства»

Цель урока: Учащиеся должны на основе знаний о жирах и их соединениях изучить состав мыла и синтетических моющих средств.

Развивающая задача: развитие позновательного интереса, умения анализировать, делать выводы.

Обучающая задача: изучение состава мыла и синтетических моющих средств.

Воспитывающая задача: экологическое воспитание на примереизучения вредного воздействия СМС на организм человека и окружающую среду.

Тип урока: комбинированный.

Ход урока: Использование приема технологии критического мышления «3-X-У»

ЗАКЛЮЧЕНИЕ

В процессе написания бакалаврской работы было изучено и проанализировано содержание анионных ПАВ в отобранных образцах моющих средств. По результатам проведённых исследований можно сформулировать несколько основных выводов:

- 1.Проведен анализ периодической литературы 2000-2019г.г. о роли синтетических поверхноствоактивных веществ и методах их определения. Установлено, потенциометрия является экспрессным и доступным методом определения анионных ПАВ.
- 2.Определены основные электрохимические и эксплуатационные характеристики твердоконтактного АПАВ селективного электрода фирмы «Вольта». Определены интервал линейности электродной функции, угловой коэффициент, дрейф потенциала, срок службы коэффициенты потенциометрической селективности электродов.
- 3. Проведено ионометрическое определение суммарного содержания анионных ПАВ в синтетических моющих средствах методом прямой потенциометрии и потенциометрического титрования показано, что содержание АПАВ варьируется в различных партиях СМС.
- 5. Разработан авторский урок по теме «Синтетические моющие средства».