МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра полимеров на базе ООО «АКРИПОЛ»

ПОЛУЧЕНИЕ И СВОЙСТВА ХЕМОМЕХАНИЧЕСКИХ ПЛЁНОК ХИТОЗАНА БИОМЕДИЦИНСКОГО НАЗНАЧЕНИЯ

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студентки <u>II</u> курса	<u>251</u> группы	
направления <u>04.04.01 – «</u>	«кимих»	
Института химии		
Колчиной Ольги Сергеевны		
Научный руководитель:		
Зав. кафедрой полимеров на базе ООО «АКРИПОЛ», д.х.н., профессор	(подпись, дата)	А. Б. Шиповская
Зав. кафедрой полимеров на базе ООО «АКРИПОЛ», д.х.н., профессор	(подпись, дата)	А. Б. Шиповская

Введение

работы. Актуальность Принцип действия полимерных интеллектуальных материалов, способных в среде эффектора («имитатора» биологических преобразовывать жидкостей) энергию химического взаимодействия в механическое движение, основывается на молекулярном 2]. [1,Полимерные материалы, распознавании проявляющие такие энергетические преобразования, называются хемомеханическими и могут использоваться в качестве «молекулярной пробки» или «молекулярного штопора» системы хранения – высвобождения лекарств [3, 4]. Авторами работ [5-8] показано, что пленки на основе хитозана (ХТЗ) хемомеханические свойства в среде различных эффекторов. Это можно особенностями строения хитозана объяснить И его возможностью существования в двух химических формах: солевой (С) и основной (О). Наличие данных свойств хитозана предопределило изучение в настоящей работе пленок на его основе, перспективных для медицинского применения.

Цель данной работы получить И изучить свойства биомедицинского назначения. Для хемомеханических плёнок хитозана вышеуказанной были получены достижения цели исходные И термомодифицированные пленки хитозана солевой и основной химической формы, геометрических исследовано изменение ИХ размеров выдерживании в водных растворах эффекторов при варьировании рН среды, проведен ИК-спектроскопический анализ данных образцов, транспортные свойства пленок хитозана.

выбраны качестве объектов исследования исходные И термомодифицированные пленки XT3 солевой (С и C^T) и основной (О и O^T) форм. Пленки получали из растворов XT3 в уксусной (УК), молочной, L- и Dаскорбиновой кислотах. Для изучения транспортных свойств высвобождению лекарственного вещества из пленки ХТЗ, водный раствор XT3 лекарственного препарата «Кетотифен» вводили раствор К непосредственно перед формированием пленок.

Структура и объём работы. Магистерская работа состоит из введения, литературного обзора, экспериментальной части, обсуждения результатов, выводов, и списка используемых источников, включающего 74 наименований. Работа изложена на 66 листах машинописного текста, содержит 39 рисунков, 9 таблиц.

Основное содержание работы

1 Изменение размеров пленок хитозана в среде салициловой кислоты

Получены пленки из растворов XT3 в уксусной, молочной, *L*- и *D*-аскорбиновой кислотах. Образцы пленок имели различные характеристики. Пленочные материалы, сформированные из растворов XT3 в УК и МК, отличались прочностью и проявляли незначительную склонность к растяжению. Пленки, отлитые из раствора XT3 в *L*- и *D*-АК, оказались хрупкими и с трудом откреплялись от подложки.

На первом этапе исследовали изменение геометрических параметров (площади поверхности – $\Delta S/S$, толщины – $\Delta d/d$ и объема – $\Delta V/V$) образцов пленок при выдерживании их в растворе эффектора – 0.18% СК. Характер поведения исследуемых образцов при выдерживании их в растворе эффектора оказался различным. Пленки из растворов ХТЗ в УК проявляют наибольшую прочность и большее увеличение геометрических параметров по сравнению с другими образцами пленок ХТЗ. Проявленные свойства определили использование для проведения дальнейших исследований пленок ХТЗ двух модификаций – C^T и O^T , полученных из раствора полимера в УК

2 Изменение размеров пленок хитозана в среде других эффекторов

Характер изменения размеров пленочных образцов XT3 в C^T и O^T форм при выдерживании их в растворах эффекторов, представляющих собой аминокислоты, либо их смеси с CK, различен. Причинами изменений, вероятно, являются и природа выбранного эффектора и те структурные преобразования пленочных материалов, которые были достигнуты путем различных модификаций.

Изменение размеров пленок XT3 C^T и O^T формы при выдерживании в растворе эффектора на основе индивидуальных компонентов CK и аминокислот отличается от выдерживания в эффекторе, представляющим собой смесь компонентов CK + аминокислота. Так, при выдерживании в смешанной эффекторной системе наблюдается значимо бо́льшее увеличение объема пленочных образцов. Исключением является лишь выдерживание пленки C^T формы в водном растворе CK + Asn. Наибольшее увеличение геометрических размеров проявляют пленки XT3 O^T формы. Относительное изменение объема достигает $3\cdot10^4$ %, что практически на два порядка превышает относительное увеличение объема пленок C^T формы.

Также в качестве эффектора была выбрана глюкоза и её смесь с СК. Согласно проведенному эксперименту, пленочные образцы $XT3\ C^T$ и O^T форм проявляют наименьшее увеличение геометрических параметров при выдерживании в глюкозе. Двукратное увеличение объема пленки $XT3\ C^T$ формы происходит в эффекторной смеси CK+глюкоза. Значение относительного увеличения объема пленки $XT3\ O^T$ формы, выдерживаемой в смеси CK+глюкоза, не превышает такового для индивидуальной CK.

3 Влияние варьирования рН среды на изменение размеров пленочных образцов

Исходя из разнообразия значений рН биологических жидкостей, проведен эксперимент по изменению геометрических размеров пленок C^T и O^T форм XT3, выдержанных в 0.18% СК, в зависимости от рН среды, регулируемой ведением 0.01 М NaOH. По мере добавления в раствор эффектора 0.01 М NaOH, пленочные образцы обоих форм XT3 претерпевали уменьшение геометрических размеров (S, мм²): C^T на 50%, O^T – 45%.

Было замечено, что по мере повышения рН пленка и раствор эффектора претерпевают помутнение, затем формирование в жидкой среде порошкообразного осадка, природа которого была установлена с помощью ИК-спектроскопического анализа (см. раздел 4). Можно предположить, что

изменение pH среды вызывает депротонирование аминогрупп XT3, что приводит к выпадению осадка XT3.

4 ИК-спектроскопические исследования образцов хитозана после нахождения в среде эффектора

ИК-спектр осадка, полученного из пленки XT3 О^Т формы при добавлении 0.01 М NaOH к раствору эффектора, схож с типичным ИК-спектром XT3 с молекулярной массой 200 кДа [9].

Также был проведен ИК-спектроскопический анализ порошкообразных материалов, представляющих собой исходные пленки C^T и O^T форм XT3, высушенные после выдерживания в растворе эффектора и измельченные. Полученные спектры показывают, что основой всех исследуемых образцов является XT3-200 [9]. Отличительными особенностями в спектрах образцов, выдержанных в растворе эффектора, является наличие полосы поглощения в области 1380 см⁻¹, соответствующей деформационным колебаниям $-NH_3^+$ групп, а также наличие полос в области 750 - 1500 см⁻¹, характерных для лизина [10] и салициловой кислоты [11].

Результаты ИК-спектроскопии, проведенной для шести исследуемых образцов пленок (C^T , C^T в Lys, C^T в Lys+CK и O^T , O^T в Lys, O^T в Lys+CK), позволяют констатировать, что при выдерживании пленочного материала в растворе эффектора происходит реакция солеобразования XT3 с кислотой. Это свидетельствует о том, что набухание пленки является следствием протекания химической реакции, т.е. выбранные пленочные материалы проявляют хемомеханические свойства.

5 Изучение транспортных свойств пленок хитозана5.1 Сорбционные свойства

На следующем этапе исследований оценивали сорбирование глюкозы пленками XT3 спектрополяриметрическим методом. Полученные кривые сорбции экспоненциально возрастают до некоторого значения $C_{\Gamma_{\Pi}}$, после

которого концентрация глюкозы не изменяется в течение длительного времени и на зависимости $C_{\Gamma_{\pi}} = f(t)$ реализуется плато. Можно отметить, что характер кривых сорбции пленок XT3 C^T и O^T форм одинаков, однако для достижения равновесного значения сорбции глюкозы пленками O^T формы XTX требуется большее время, чем для пленок C^T формы XT3.

По мере снижения концентрации глюкозы в исходном растворе, количество адсорбированного вещества пленками XT3 обеих химических форм убывает. Скорость сорбции глюкозы пленками XT3 C^T и O^T форм снижается, проходя через максимум. Определенные константы адсорбции K и n уравнения Фройндлиха для пленок XT3 C^T и O^T форм оказались близкими и составили 0.8 и 0.3, соответственно. Полученные результаты указывают на идентичность химических превращений, протекающих при термомодифицировании пленок хитозана C и O формы.

5.2 Высвобождение лекарственного препарата «Кетотифен» из пленок хитозана

После подтверждения хемомеханических свойств пленок XT3 с помощью ИК-спектроскопии, следующим шагом исследований стало изучение кинетики высвобождения лекарственного вещества «Кетотифен» из пленки O^T формы XT3 в среде эффектора. Высвобождение фиксировали с помощью спектрофотометра: регистрировали значение оптической плотности раствора при $\lambda = 299$ нм во времени.

Начало высвобождения лекарственного вещества происходит через 10 мин выдерживания в эффекторной среде. Выход лекарственного вещества из пленки XT3 составил ~40%. Проведенные эксперименты свидетельствуют о том, что исследуемые пленки перспективны для разработки материалов на основе XT3 для контролируемой доставки лекарственных препаратов в зоне запланированной локализации, например, в кислой среде желудка.

Заключение

Получены пленки XT3 С и О формы из его растворов в уксусной, молочной, L- и D-аскорбиновой кислотах, проведено их термомодифицирование (C^T , O^T). Удовлетворительные физико-механические и деформационно-прочностные свойства пленок из растворов XT3 в УК определили их использование в последующих исследованиях.

Исследовано изменение геометрических размеров исходных (О) и термомодифицированных (C^T , O^T) пленок XT3, сформированных из растворов в УК, при выдерживании в водных растворах эффекторов: салициловой кислоте, лизине, аспарагине, α -(β -)аланине, β -фенил- α -(β -)аланине, глюкозе и их смесей. Установлено, что пленочные образцы претерпевают в данных средах расширение, количественные характеристики которого определяются природой выбранного эффектора и структурными преобразованиями модифицированной полимерной матрицы.

Методом ИК-спектроскопии доказано формирование ионной связи –NH₂ группа XT3-кислота при выдерживании пленок в среде эффектора. Сделан вывод, что изменение геометрических параметров пленки связано не только с набуханием образца и разворачиванием межузловых сегментов макроцепей, но и с протеканием химической реакции солеобразования. Таким образом, выбранные пленочные материалы на основе XT3 проявляют хемомеханические свойства.

Изучены сорбционные (по глюкозе) и транспортные (по кетотифену) свойства термомодифицированных пленочных материалов на основе XT3. Показана идентичность кинетики сорбции глюкозы пленками XT3 C^T и O^T формы, что указывает на общность химических превращений, протекающих при термомодифицировании образцов. Выход кетотифена из пленок XT3 O^T формы в течение 45 мин составил \sim 40%, что существенно выше по сравнению с выходом лекарственного вещества из исходных пленок XT3.

Список литературы

- 1. Intelligent materials / Ed. M. Shahinpoor and H.-J. Schneider. Cambridge: Royal Society of Chemistry. 2007. 532 p.
- 2. Dai L. Intelligent macromolecules for smart devices: from materials synthesis to device applications. London: Springer-Verlag. 2004. 496 p.
- 3. Zhang Y., Yu A., Wang Y.J. Polymer nanoparticles for the delivery of drug and gene // Prog. Chem. 2008. No. 20. P. 740–746.
- 4. Schexnailder P., Schmidt G. Nanocomposite polymer hydrogels // Colloid Polym. Sci. 2009. Vol. 287. Is. 1. P. 1–11.
- Schneider H.-J., Kato K. Direct Translation of Chiral Recognition into Mechanical Motion // Angewandte Chemie International Edition. 2007. Vol. 46. No. 15. P. 2694–2696.
- 6. Schneider H.J., Tianjun L., Lomadze N., Palm B. Cooperativity in a Chemomechanical Polymer: A Chemically Induced Macroscopic Logic Gate // Advanced Materials. V. 16. Is. 7. 2004. P. 613–615.
- 7. Schneider H.-J., Kato K. Molecular recognition in chemomechanical polymers // J. Mat. Chem. 2009. Vol. 19. Is. 5. P. 569–573.
- 8. Schneider H.-J., Strongin R.M. Supramolecular interactions in chemomechanical polymers // Acc. Chem. Res. 2009. Vol. 42. No. 10. P. 1489–1500.
- 9. Сбитнева С.В., Луговицкая Т.Н., Шиповская А.Б. Спектроскопическое и рентгенодифрактометрическое исследование порошка аспарагината хитозана // Межвуз. сборник.научн. трудов XIII Всерос. конф. молодых ученых с международ. участием "Современные проблемы теоретической и экспериментальной химии". Саратов: Изд-во "Саратовский источник". 2018. С. 130–132.
- 10. Терпугов Е.Л., Дегтярева О.В. Инфракрасный колебательный спектр эмиссии лизина, возбужденный видимым излучением умеренной мощности // Письма в ЖЭТФ. 2001. Т. 73. № 6. С. 319–322.

11. Веденяпин А.А., Ракишев А.К., Батурова М.Д., Серых А.И., Скундин А.М., Кулова Т.Л., Вайхгребе Д. Образование адсорбционного комплекса и поверхностной пленки при электрокаталитическом окислении салициловой кислоты // Конденсированные среды и межфазные границы. 2005. Т. 7. № 2. С. 117–122.

Kocf