МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра геофизики

« Уточнение методики оценки характера насыщения по данным газового каротажа для продуктивных отложений республики Удмуртии»

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студентки 2 курса 261 группы очной формы обучения геологического факультета направление05.04.01 «Геология» профиль «Геофизика при поисках нефтегазовых месторождений» Пахомовой Ольги Анатольевны

Научный руководитель		
к.гм.н.,доцент		К.Б.Головин
	подпись, дата	
Зав. кафедрой		
к.гм.н., доцент		Е.Н. Волкова
	подпись, дата	

Введение. Актуальность работы. Геолого-технологические исследования (ГТИ) являются составной частью геофизических исследований бурящихся скважин и предназначены для осуществления контроля процессов, происходящих в скважине на всех этапах ее строительства. ГТИ проводятся непосредственно в процессе бурения скважины, без простоя в работе буровой бригады и бурового оборудования по параметрам, измеряемыми на поверхности.

Именно опираясь на результаты ГТИ, проводится анализ нештатных ситуаций, выбор параметров промывочной жидкости, грамотное проектирование бурения последующих скважин, разведки, освоения и эксплуатации месторождения, и так далее. Результаты ГТИ учитываются при количественной интерпретации ГИС и подсчете запасов УВ, являются важным компонентом для оценки продуктивности в сложных геологических условиях. При отсутствии ГИС (отказ либо непрохождение приборов, недостаточный комплекс) количественная интерпретация проводится только по данным ГТИ.

Основным методом, позволяющим произвести количественную оценку насыщенности пород непосредственно в процессе бурения, по-прежнему является газовый каротаж. Для оценки выделенных по механическому каротажу перспективных интервалов используются методики интерпретации базовых газового каротажа: метод треугольников, флюидных коэффициентов, палетка Пикслера, диаграмма РАГ. В данной работе будет рассматриваться палетка Пикслера, которая помогает в определении газонефтяного контакта, входа в пласт и дает более точное представление о типе флюида. Объектом исследования являются продуктивные интервалы Карсовайского месторождения скважины 413.

Цель магистерской работы заключается в создании уточненной методики оценки характера насыщения по данным газового каротажа для продуктивных отложений республики Удмуртии. В соответствии с поставленной целью необходимо решить следующие задачи:

- 1. Изучение геолого-геофизических информации;
- 2. Освоение приёмов обработки и интерпретации ГТИ-ГИС;
- 3. Изучить результаты, полученные при ИПТ;
- 4. Конкретизация граничных диапазонов палетки Пикслера для определения фазового состояния флюида.

Практическая ценность заключается в уточнении палетки Пикслера для оценки характера насыщения продуктивных отложений республики Удмуртии.

Материал для написания данной работы получен во время прохождения практики в ООО «Нефтегазсервис Саратов».

Данная работа включает титульный лист, содержание, введение, 3 раздела — «Геолого — геофизическая характеристика территории исследования», «Методика проведения геолого-технологических исследований», «Результаты работы», 13 подразделов, заключение, список использованных источников, 9 рисунков, 6 таблиц, 2 приложения. Объем работы составляет 54 страницы.

Основное содержание работы. Раздел 1 посвящен геолого – геофизической характеристики территории исследования и включает в себя 4 подраздела. Подраздел 1.1 «Административное расположение и степень изученности Карсовайского месторождения». В административном отношении Карсовайское месторождение находится на Балезинского и Кезского районов Удмуртской Республики, в 40 км восточнее г. Глазова и в 25 км северо-восточнее п. Балезино. В подразделе 1.2 стратиграфическая «Литолого характеристика разреза» дается стратиграфическое описание геологического разреза исследуемой территории. Глубокими скважинами на Карсовайском месторождении вскрыты кристаллические породы фундамента и осадочные образования венда и палеозоя. Стратиграфическое расчленение разреза произведено в

соответствии с унифицированной стратиграфической схемой Волго-Уральской нефтегазоносной провинции от 1988 г..

В подразделе 1.3 «Тектоника» описано тектоническое строение и районирование территории, к которой приурочено месторождение. В тектоническом отношении Карсовайское месторождение расположено в Северной структурно-тектонической зоне Верхнекамской впадины основной особенностью которой является отсутствие в разрезе отложений рифейского комплекса протерозоя.

В подразделе 1.4 описана нефтегазоносность района. Промышленная нефтегазоносность Карсовайского поднятия приурочена к карбонатным отложениям касимовского яруса верхнего карбона, мячковского горизонта, подольского горизонта, каширского горизонта, верейского горизонта, башкирского яруса.

Раздел «Методика проведения геолого-технологических исследований» включает в себя 5 подразделов. В подразделе 2.1 «Общие сведения о геолого-технологических исследованиях» рассмотрены общие сведения о геолого-технологических исследованиях. В подразделе 2.2 рассмотрены задачи геолого-технологических исследований. Подраздел 2.3 описываются геолого-геохимические исследования, которые являются неотъемлемой частью при выполнении геологоразведочных работ, оценки месторождения и разработки залежей нефти и газа. Данный подраздел состоит из 5 пунктов. В пункте 2.3.1 описывается люминесцентнобитуминологический анализ; в 2.3.2 описывается термо-вакуумная дегазация; в 2.3.3 описывается испытание пластов на трубах; в пункте 2.3.4 описывается газовый каротаж; в 2.3.5 описывается детально-механический каротаж. В подразделе 2.4 рассмотрен комплекс промыслово-геофизических исследований скважин (ГИС), техника, методика и качество проведенных исследований применяемые на Карсовайском месторождении, а в подразделе 2.5 приведено описание методики палетки Пикслера, которая решает задачу определения характера насыщения по данным газового каротажа.

Раздел 3 «Результаты работы» делится на 4 подраздела. В работе рассматривается применение газового каротажа для оперативного определения перспективных на нефть и газ участков в разрезе скважины и прогнозной оценки характера их насыщения, так же он используется для выявления зон аномально высоких поровых давлений и предупреждения внезапных выбросов пластового флюида. Для интерпретации данных газового каротажа применяются ряд методик, в том числе палетка Пикслера. Все методики основаны на соотношениях и граничных значениях компонентов с C₁-C₅.

Подраздел 3.1 «Анализ данных ИПТ». Уточнения методик интерпретации газового каротажа проводилось с помощью прямого метода определения характера насыщения пласта - испытания пластов на трубах (ИПТ).

Испытание пластов в открытом стволе в процессе бурения скважины осуществляется по мере вскрытия перспективных интервалов разреза. Обязательным условием получения достоверных данных является максимально возможное сохранение природных фильтрационных свойств вскрываемых пород и обеспечение гидравлической связи между породами и скважиной. Достигается это регулированием физико-химических параметров бурового раствора, применяемого при вскрытии объектов. Результаты ТВД проб в таблицах 1.

Таблица 1 – Результаты ТВД проб флюида

Номер пробы	C ₁	C ₂	C ₃	C4	C ₅		
Нефть							
1	4.694	4.221	10.551	11.224	7.011		
2	2.137	14.364	27.056	16.220	6.277		
3	0.295	0.117	3.182	2.387	1.415		
4	0.008	0.003	0.054	0.034	0.021		
5	1.285	2.395	6.533	5.288	3.135		

Номер	\mathbf{C}_{1}	\mathbb{C}_2	С3	C ₄	C ₅				
пробы	_	_		-					
6	0.913	3.894	11.214	7.364	2.111				
7	0.017	0.030	0.096	0.117	0.091				
8	0.254	0.343	1.537	1.717	1.396				
9	1.340	3.674	14.829	15.673	12.859				
10	1.006	1.552	1.887	1.470	1.045				
	Газ								
1	0.020	0.018	0.021	0.010	0.005				
2	0.044	0.028	0.035	0.014	0.010				
3	0.002	0.001	0.001	0.001	0.003				
		Пласто	вая вода						
1	0.048	0.031	0.033	0.011	0.008				
2	0.008	0.004	0.217	0.121	0.097				
3	0.017	0.002	0.001	0.001	0.001				
4	0.038	0.027	0.019	0.020	0.022				
5	0.032	0.024	0.016	0.015	0.010				
Нефть+пластовая вода									
1	0.180	3.433	3.374	1.796	1.267				
2	0.285	4.395	2.533	2.288	3.135				
3	0.167	4.030	2.096	1.117	1.091				
4	0.131	2.446	1.261	1.481	1.611				

Подраздел 3.2 «Результаты определения фазового состояния флюида с использованием стандартной палетки Пикслера». В палетке Пикслера разделения на не продуктивные и насыщенные углеводородом интервалы, строятся с помощью соотношений метана (C_1) ко всем остальным компонентам газа $(C_2\text{-}C_5)$. Графики кривых построенные по палетки

Пикслера помогают в определении газо-нефтяного контакта, входа в пласт и дают более точное представление о типе флюида, как показано на рисунке 1.

Использование хорошо зарекомендовавшей себя в соседних регионах методики Пикслера привело к неоднозначным результатам при интерпретации данных газового каротажа в условиях республики Удмуртии. На рисунке 1 заметно, что данные по нефти попали в непродуктивную часть палетки и даже выходят за её границы, газовый характер насыщения наоборот попадает в нефтяной диапазон. Исходя из полученных результатов, палетку Пикслера требовала уточнения граничных значений флюидных коэффициентов, использовавшихся при расчете палетки Пикслера.

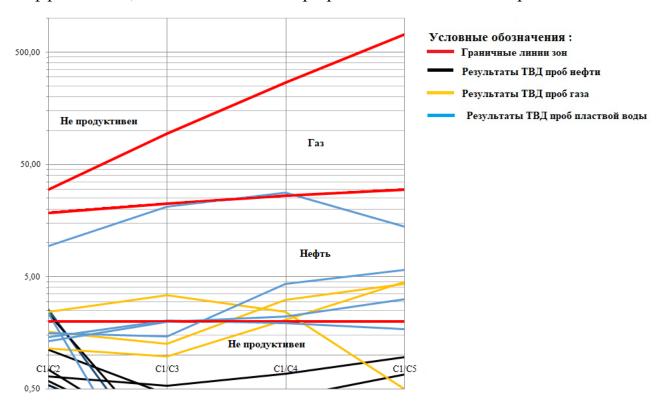


Рисунок 1– Стандартная палетка Пикслера с данными ТВД флюида

Подраздел 3.3 «Результаты определения фазового состояния флюида с использованием уточненной палетки Пикслера». Палетка Пикслера уточнена с помощью результатов полученных при испытаниях пластов на трубах (ИПТ). Заведомо известное насыщение «нефть» попало в зону не продуктивности. В ходе исследования диапазон значений в зоне «нефти» на палетке сдвинут в сторону меньших чисел. Граничная линия, обозначающая

нижнюю границу диапазона подвинута на 0,08, вместо 2. Результаты ТВД проб газа попали в зону «нефти», поэтому нижнюю граничную линию пришлось передвинуть ниже.

В результате на рисунке 2 показаны построенные диапазоны с использованием прямых признаков насыщения для конкретных условий, которые позволяют более достоверно определять характер насыщения по данным частичной дегазации ГВЛ, полной ТВД по буровому раствору и по шламу, а так же по керну.

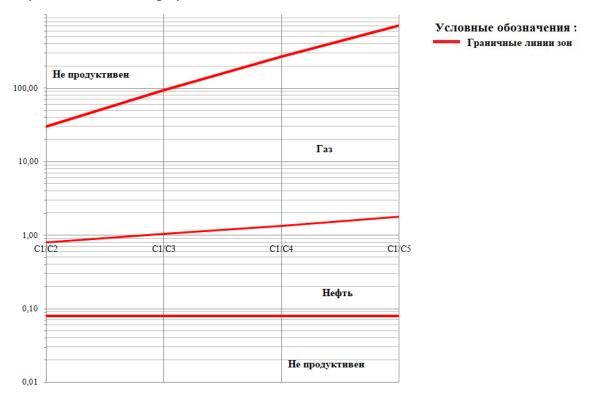


Рисунок 2 - Уточненная палетка Пикслера

Подраздел 3.4 «Определение фазового флюида». состояния Определение фазового состояния флюида на примере водонефтяного контакта. На уточненную палетку нанесены смешенные результаты проб типа «нефть+пластовая вода» взятые из таблицы 1 для подтверждения разграничения граничных 30Н, которые ранее были построены ПО однозначным результатам ИПТ, как показано рисунке 3.

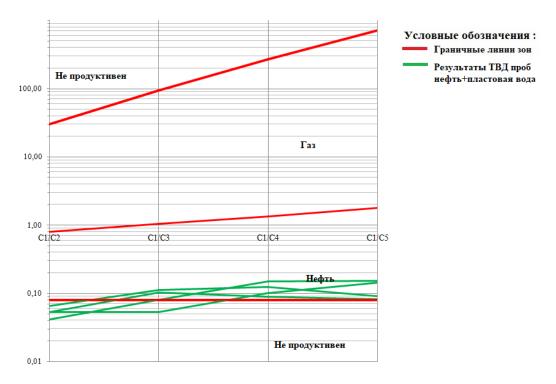


Рисунок 3 - Уточненная палетка Пикслера с данными ТВД по флюидам По керну, определяются фильтрационно-емкостные свойства пласта: пористость, проницаемость, нефте- и газонасыщенность. Нефтенасыщенность керна подтверждается наличием выпотов и запаха углеводорода. Были рассмотрены 5 результатов отборов керна в Удмуртской республике, показанные в таблице 2. На рисунке 4 показаны результаты интерпретации полученных результатов на уточненной палетки, которая так же подтверждает нефтенасыщения.

Таблица 2 – Результаты ТВД проб отбора шлама

Номер отбора	C ₁	C ₂	C ₃	C ₄	C ₅
1	0.278	0.556	1.514	1.589	1.227
2	0.292	0.499	1.001	1.325	1.026
3	0.473	0.376	0.512	0.582	0.649
4	0.003	0.002	0.004	0.005	0.005
5	0.268	0.524	1.312	1.567	1.124

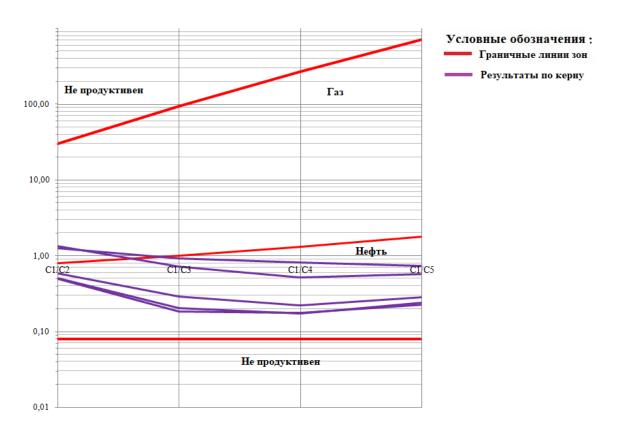


Рисунок 4 - Уточненная палетка Пикслерас данными по керну

Определение фазового состояния флюида в продуктивных на примере Карсовайского месторождения скважина 413. Продуктивные пласты-коллекторы в разрезе скважины выделены пласты в интервалах 1652,3 - 1653,4м, 1657,85 - 1660,51м по данным газового каротажа с помощью интерпретации ГТИ-ГИС, представлены интервалы известняками от серого до бежевого цвета, мелко- и скрытокристаллическими, средней крепости. Превышение газовых аномалий относительно фоновых показаний до 12-ти раз. Показания в аномальных участках и будут использованы для расчета по различным методикам интерпретации газового каротажа.

По результатам промыслово-геофизических исследований (ГИС) на скважине 413 Карсовайском месторождении выделены пласты коллекторы с нефтяным характером насыщения в башкирском ярусе, представленные в таблице 3.

Таблица 3 - Результаты оперативной интерпретации ГИС

Интервал,	Кг	Кп	Кп	Кпэф	Кнг	Коллектор	Литология	Характер
M	Л	AK	ГГК	%	%			насыщен
	%	%	%					ия
1650 - 1651	3.4	8.5	9.5	5.2	63.6	Уплотненный	Карбонаты	Нефть
	1					коллектор		
1652.3-	3.4	13	6.5	7.5	58.6	Неоднородны	Карбонаты	Нефть
1653.4						й		
						коллектор		
1654.8-	2.6	9.4	11.1	7.9	80.1	Коллектор	Карбонаты	Нефть
1655.9								
1657.5-	3.6	8.8	7.2	5.5	-	Неколлектор	Карбонаты	-
1659	5							
1659.7-	1.3	11.	13.5	9.7	78.3	Неоднородны	Карбонаты	Нефть
1661.1	7	2				й		
						Коллектор		
1661.1-	1.3	12.	10.8	10.5	74	Коллектор	Карбонаты	Нефть
1662.1	4	4						

Анализ результатов интерпретации газового каротажа скважины №413 представлен на рисунке 5, по которому видно, что методика «палеток Пикслера», подтвердила нефтяной характер насыщения.

Рисунок 5 - Уточненная палетка с результатами газопоказаний по данным частичной дегазации бурового раствора на глубинах 1653м, 1659м.

Заключение. В магистерской работе были изучены геологогеофизическая информация по Карсовайскому месторождению, методика проведения геолого-технологических исследований (ГТИ) и методика интерпретации газового каротажа, а так же изучен комплекс промысловогеофизических исследований скважин (ГИС), методика проведенных исследований.

В данной работе был рассмотрен метод интерпретации данных газового каротажа, а именно палетка Пикслера. Данная методика хорошо зарекомендовавшей себя в соседних регионах, но привела к неоднозначным результатам при интерпретации данных газового каротажа в условиях республики Удмуртии.

В ходе исследования методика Пикслера была уточнена с помощью результатов прямого метода определения характера насыщения пласта - испытания пластов на трубах (ИПТ).

В ходе исследования диапазон значений в зонах «нефти» и «газа» на палетке сдвинут в сторону меньших чисел. В принципе, полученные соотношения углеводородных компонентов позволяют уточнить все методики интерпретации газового каротажа, основанные на флюидных коэффициентах.

В результате построены диапазоны с использованием прямых признаков насыщения для конкретных условий, что позволит более достоверно определять характер насыщения по данным частичной дегазации ГВЛ, полной ТВД по буровому раствору и по шламу, а так же по керну.