МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра физики твёрдого тела

ИЗМЕРЕНИЕ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ СТРУКТУР НА СВЕРХВЫСОКИХ ЧАСТОТАХ ВОЛНОВОДНЫМ МЕТОДОМ

Автореферат

студента 4 курса 411 группы

направления 11.03.04 «Электроника и наноэлектроника»

факультета нано- и биомедицинских технологий

Матиева Артема Батыровича

Научные руководители

д.ф.-м.н., профессор должность, уч. степень, уч. звание

подпись, дата

А.В. Скрипаль

инициалы, фамилия

к.ф.-м.н., старший преподаватель должность, уч. степень, уч. звание

Зав. кафедрой

д.ф.-м.н., профессор

должность, уч. степень, уч. звание

подпись, дата

подпись, дата

А.В. Скрипаль

инициалы, фамилия

Саратов 2020

Е.В. Латышева

инициалы, фамилия

СОДЕРЖАНИЕ РАБОТЫ

В производстве современной электроники необходимо максимально точно определять параметры и физические характеристики различных материалов. Обычно бесконтактным методам отдают предпочтения, когда стоит задача исследования полупроводниковых материалов и структур.

Одним из важнейших этапов в технологии производства современных устройств микро- и наноэлектроники является осуществление контроля электрофизических характеристик слоёв полупроводниковых структур.

Целью настоящей работы было показать возможность одновременного нахождения значений толщины и удельной электропроводности слоев в полупроводниковых структурах в случае, когда в системе реализуются условия для возникновения полуволнового резонанса.

Определить диэлектрическую проницаемость є_L диэлектрических материалов по спектрам электромагнитного излучения на частоте полуволнового резонанса ω_0 можно по формуле

$$\varepsilon_{L} = \frac{(\pi/L)^{2} + (\pi/a)^{2}}{\omega_{0}^{2} \varepsilon_{0} \mu_{0}}, \qquad (1)$$

и из решения обратной задачи с использованием метода наименьших квадратов. Для выполнения этого метода сначала находится значение ε_L , при котором сумма S (ε_L) квадратов разностей экспериментальных $|R_{3\kappacn}|^2$ и расчётных $|R(\omega, \varepsilon_L)|^2$ и прохождения $|D(\omega, \varepsilon_L)|^2$ значений квадратов модулей коэффициента отражения для двух конфигураций является наименьшей из всех возможных.

$$S(\varepsilon_L) = \sum \left(\left| R_{\text{\tiny 3KCII}} \right|^2 - \left| R(\omega, \varepsilon_L) \right|^2 + \left| D_{\text{\tiny 3KCII}} \right|^2 - \left| D(\omega, \varepsilon_L) \right|^2 \right)^2 (2)$$

Выражения для R и D для волновода, содержащего образец, полностью заполняющий его по поперечному сечению:

$$R = \frac{(\gamma_0^2 - \gamma^2)sh(\gamma L)}{(\gamma_0^2 + \gamma^2)sh(\gamma L) + 2\gamma\gamma_0 ch(\gamma L)}; (3)$$
$$D = \frac{2\gamma\gamma_0}{(\gamma_0^2 + \gamma^2)sh(\gamma L) + 2\gamma\gamma_0 ch(\gamma L)}; (4)$$

Искомое нами значение диэлектрической проницаемости можно рассчитать численными методом с помощью решения следующего уравнения на компьютере:

$$\frac{\partial S(\varepsilon_L)}{\partial \varepsilon_L} = 0 \quad (5)$$

На рис. 1 показаны частотные зависимости квадратов модулей коэффициентов прохождения и отражения для диэлектрика (фторопласт), полученные как экспериментальным, так и расчётным путём при значении $\varepsilon_L = 1.974$, определённым из решения обратной задачи с использованием уравнения (2).

Рис. 1. Экспериментальные (2, 4) и расчётные (кривые 1, 3) частотные зависимости $|D|^2$ (1, 2) и $|R|^2$ (3, 4).

В таблице 1 указаны используемые в ходе работы материалы, их толщины, резонансные частоты, полученные значения диэлектрической

Материал	Толщина	Частота	ε_L (MHK)	\mathcal{E}_L	σ
		резонанса			
Фторопласт	12.16 мм	9.924 ГГц	1.923	1.975	1.63914.10-4
Текстолит	9.9 мм	8.508 ГГц	3.801	3.755	1.8014.10-4
Винипласт	9.16 мм	9.932 ГГц	3.088	3.146	1.85898.10-4

Таблица 1. Характеристики исследуемых материалов.

проницаемости для данных структур, рассчитанные по формуле (2) и полученные с помощью метода наименьших квадратов (МНК).

Параметры полупроводниковых материалов могут быть определены при размещении исследуемой структуры после образца, размеры которого сравнимы с половиной длины волны излучения, распространяющегося в волноводе (рис. 2a).

Рис. 2. Схематическое изображение расположения измеряемой структуры в волноводе (Р_{пад}, Р_{отр} и Р_{прощ} — СВЧ-мощности падающей, отражённой и прошедшей электромагнитной волны). 1 — диэлектрик, 2 — полупроводниковый слой, 3 — полупроводниковая подложка.

Коэффициенты отражения и прохождения СВЧ-излучения, взаимодействующего с многослойной структурой, выражаются через элементы матрицы передачи **T**_N:

$$R = -\frac{\mathbf{T}_{N}[2,1]}{\mathbf{T}_{N}[2,2]}, \quad D = \frac{\mathbf{T}_{N}[1,1] \cdot \mathbf{T}_{N}[2,2] - \mathbf{T}_{N}[1,2] \cdot \mathbf{T}_{N}[2,1]}{\mathbf{T}_{N}[2,2]}$$
(6)

Исследуемая структура устанавливалась в прямоугольном волноводе и полностью заполняла его по поперечному сечению. Для этого случая распространения электромагнитной постоянные волны $\gamma_0, \gamma_{\pi}, \gamma_{\pi}, \gamma_{\pi\pi}$ соответственно волноводе, диэлектрических В пустом В И волновод полупроводниковых слоях, полностью заполняющих ПО поперечному сечению, рассчитываются с использованием выражений:

$$\gamma_0 = \sqrt{\frac{\pi^2}{a^2} - \omega^2 \varepsilon_0 \mu_0} , \ \gamma_{\pi} = \sqrt{\frac{\pi^2}{a^2} - \omega^2 \varepsilon_{\pi} \varepsilon_0 \mu_0} , \ \gamma_{\pi\pi,\pi} = \sqrt{\frac{\pi^2}{a^2} - \omega^2 \varepsilon_{\pi\pi,\pi}^* \varepsilon_0 \mu_{\pi\pi,\pi} \mu_0} ,$$
(7)

где $\varepsilon_{n, noq}^* = \varepsilon_{n, noq} - j\varepsilon_{n, noq}^{"}$ – комплексные диэлектрические проницаемости сильнолегированного полупроводникового n^+ -слоя и полупроводниковой подложки; $\omega = 2\pi f$ - круговая частота электромагнитной волны; ε_0 и μ_0 – диэлектрическая и магнитная проницаемости вакуума; ε_{n} – относительная диэлектрическая проницаемость диэлектрического слоя.

На рис. 3 показаны расчетные частотные зависимости коэффициента отражения электромагнитной волны от частоты зондирующего сигнала для полупроводниковой структуры с различными значениями удельной электропроводности.

Из полученных результатов можно сделать соответствующий вывод: для определённого интервала проводимостей полупроводника при увеличении значений удельной электропроводности уменьшается резонансная частота и значение $|\mathbf{R}|^2$. При увеличении толщины материала наблюдается уменьшение значения $|\mathbf{R}|^2$. Следовательно, по частотным зависимостям коэффициентов отражения и прохождения на СВЧ можно

5

Рис. 3. Частотные зависимости $|\mathbf{R}|^2$ для системы диэлектрик – полупроводниковая структура. Значения удельной электропроводности полупроводникового слоя: 1 — $\sigma = 20 \text{ Om}^{-1} \cdot \text{m}^{-1}$; 2 — $\sigma = 40 \text{ Om}^{-1} \cdot \text{m}^{-1}$; 3 — $\sigma = 70 \text{ Om}^{-1} \cdot \text{m}^{-1}$; 4 — $\sigma = 100 \text{ Om}^{-1} \cdot \text{m}^{-1}$.

Рис. 4. Частотные зависимости $|\mathbf{R}|^2$ для системы диэлектрик —полупроводниковая структура. Значение удельной электропроводности здесь постоянно — $\sigma = 20 \text{ Om}^{-1} \cdot \text{m}^{-1}$;

Значения толщин полупроводникового слоя:1 — 2 мкм, 2 — 20 мкм, 3 — 40 мкм, 4 — 60 мкм.

определить толщину или удельную электропроводность.

Пусть, мы имеем две конфигурации исследуемой структуры, включающей образец арсенид-галлиевой структуры с эпитаксиальным слоем, выращенным на высокоомной подложке (рис. 2).

Для определения толщины и удельной электропроводности σ_{Π} полупроводникового слоя по спектрам электромагнитного излучения, воспользуемся методом наименьших квадратов: найдем значения σ_{Π} и t_{Π} при котором сумма S (t_{Π} , σ_{Π}) квадратов разностей экспериментальных $|R_{\mathfrak{s}\kappa c\Pi}|^2$ и расчётных $|R (t_{\Pi}, \sigma_{\Pi})|^2$ значений квадратов модулей коэффициента отражения и прохождения ($|D_{\mathfrak{s}\kappa c\Pi}|^2$ и $|D (t_{\Pi}, \sigma_{\Pi})|^2$) для двух конфигураций–является наименьшей из всех возможных:

$$S(t_{\pi}, \sigma_{\pi}) = \sum \left(\left| R_{1 \text{ >>Kc}} \right|^2 - \left| R_1(t_{\pi}, \sigma_{\pi}) \right|^2 + \left| D_{1 \text{ >>Kc}} \right|^2 - \left| D_1(t_{\pi}, \sigma_{\pi}) \right|^2 + \left| R_{2 \text{ >>Kc}} \right|^2 - \left| R_2(t_{\pi}, \sigma_{\pi}) \right|^2 + \left| D_{2 \text{ >>Kc}} \right|^2 - \left| D_2(t_{\pi}, \sigma_{\pi}) \right|^2 \right)^2$$
(8)

Искомое нами значение электропроводности можно рассчитать численными методом с помощью решения системы уравнений на компьютере:

$$\frac{\partial S(t_{\pi},\sigma_{\pi})}{\partial \sigma_{\pi}} = 0, \quad \frac{\partial S(t_{\pi},\sigma_{\pi})}{\partial t_{\pi}} = 0 \quad (9)$$

Для того, чтобы «отработать» метод измерений, выполнялась тестовая задача. Сначала были заданы удельные электропроводности и толщины слоёв структуры, размещаемой в волноводе. Значение толщины фторопласта выбиралось равным 19.8 мм, толщина полупроводниковой подложки – 482 мкм, толщина полупроводникового слоя $t_{\pi} = 19.2$ мкм и его удельная электропроводность $\sigma_{\pi} = 70$ Ом⁻¹·м⁻¹. Далее решалась прямая задача – был произведен расчёт частотных зависимостей коэффициентов пропускания и отражения исследуемой нами структуры, при этом были использованы

выражения (3) и (4). Полученные «начальные» частотные зависимости с погрешностью в 2% были взяты в качестве экспериментальных при решении обратной задачи по нахождению величин полупроводникового материала, которые принимаются в данном случае за неизвестные и подлежат нахождению.

На рисунке 5 продемонстрированы «начальные» и рассчитанные при значениях параметров, определенных с помощью решения обратной задачи, частотные зависимости квадратов модулей коэффициентов отражения и прохождения для двух конфигураций исследуемой структуры.

Рис. 5. Частотные зависимости $|\mathbf{R}|^2$ (2,3) и $|\mathbf{D}|^2$ (1), полученные с погрешностью в 2%, выбранные в качестве экспериментальных ($\circ\Box\Delta$) и полученные с помощью расчёта (кривые) при значениях толщины полупроводникового слоя $t_{\pi} = 17$ мкм и удельной электропроводности $\sigma_{\pi} = 78.6 \text{ Om}^{-1} \cdot \text{m}^{-1}$, определённых из решения обратной задачи с использованием системы уравнений (9).

Измеряемая полупроводниковая структура помещалась в волновод, полностью заполняя его по поперечному сечению после слоя фторопласта, толщина которого выбиралась равной 19.8 мм. Образцы, которые исследовались в ходе эксперимента, представляли собой эпитаксиальные арсенид-галлиевые структуры, состоящие из сильнолегированного эпитаксиального слоя и полупроводниковой подложки. Толщина полупроводниковой подложки составляла 482 мкм. Посредством векторного анализатора цепей Agilent PNA N5230A определялись частотные зависимости коэффициентов отражения и прохождения СВЧ-излучения, взаимодействующего с исследуемой структурой.

Рис. 6. Экспериментальные (точки) и расчетные (кривые) частотные зависимости $|D|^2$ (точки и кривая 1) и $|R|^2$ (точки и кривая 2).

На рисунке 6 продемонстрированы экспериментальные частотные зависимости квадратов модулей коэффициентов отражения и прохождения и частотные зависимости, рассчитанные при значениях толщины полупроводникового слоя $t_{\pi} = 2.6$ мкм и удельной электропроводности $\sigma_{\pi} = 8.8$ Ом⁻¹·м⁻¹. Как видно из графика, наилучший диапазон частот для измерений вблизи интервала от 10 до 10.5 ГГц, в котором явно выражен резонансный характер спектров отражения и прохождения для данной структуры при заданных условиях.

Заключение

Таким образом, в ходе выполнения выпускной квалификационной работы были получены следующие результаты:

1) В диапазоне частот 8-12 ГГц экспериментально исследованы образцы диэлектрических материалов, получены значения диэлектрических проницаемостей методом полуволнового резонанса и с помощью метода наименьших квадратов.

2) Построена математическая модель и проведено компьютерное моделирование частотных зависимостей коэффициентов отражения и прохождения для структуры, состоящей из трех слоев при различных значениях удельной электропроводности и толщины полупроводникового слоя.

3) В диапазоне частот 8-12 ГГц экспериментально исследованы образцы, представляющие собой эпитаксиальные арсенид-галлиевые структуры, состоящие из сильнолегированного эпитаксиального слоя и полупроводниковой подложки и расположенные двумя способами относительно направления распространения электромагнитной волны.

4) В ходе компьютерного моделирования и экспериментальных исследований была проанализирована И подтверждена возможность одновременного значений удельной нахождения толщины И сильнолегированного электропроводности эпитаксиального слоя В полупроводниковых структурах в случае, когда в системе выполняются условия для возникновения полуволнового резонанса.

10

Список использованных источников

1. Усанов Д.А. СВЧ-методы измерения параметров полупроводников. Саратов: Изд-во Сарат. ун-та, 1985. 55 с.

2. Усанов Д.А., Никитов С.А., Скрипаль А.В., Пономарев Д.В., Латышева Е.В. Многопараметровые измерения эпитаксиальных полупроводниковых структур с использованием одномерных сверхвысокочастотных фотонных кристаллов // Радиотехника и электроника. 2016. Т. 61, № 1. С. 45–53.

3. Ю.А. Чаплыгин, Д.А.Усанов, А.В.Скрипаль, А.В.Абрамов, А.С.Боголюбов. Методика измерения электропроводности нанометровых металлических пленок в слоистых структурах по спектрам отражения электромагнитного излучения // Известия ВУЗов. Электроника №5. 2006. С. 25-33.

4. Усанов Д.А. Измерение параметров полупроводников, микро-и наноструктур на СВЧ / Усанов Д.А., Скрипаль А.В., Феклистов В.Б., Вениг С.Б // учебное пособие – Саратов: Электронное издание Сарат. ун-та, 2012. – 91 с.: ил.

5. Усанов Д.А. Измерение параметров полупроводников, микро-и наноструктур на СВЧ / Усанов Д.А., Скрипаль А.В., Феклистов В.Б., Вениг С.Б // учебное пособие – Саратов: Электронное издание Сарат. ун-та, 2012. – 55 с.: ил.

Фаддеев М.А. Элементарная обработка результатов эксперимента:
 Учебное пособие. — Нижний Новгород: Изд-во Нижегородского госуниверситета, 2002. — 108 с.

7. Усанов Д.А., Скрипаль А.В., Пономарев Д.В., Латышева Е.В. Использование волноводно-диэлектрического резонанса для измерения параметров структуры «нанометровая металлическая пленка – диэлектрик» //Радиотехника. 2016. № 7. С. 10–16.

11