МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО» (СГУ)

Кафедра физики полупроводников

Исследование возможности изготовления преобразователя свет-частота на основе планарно-эпитаксиальных мезаструктур высокоомного арсенида галлия в лабораторных условиях

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 412 группы направления 11.03.04 «Электроника и наноэлектроника» факультета нано- и биомедицинских технологий

Метелева Евгения Сергеевича

Научный руководитель		
д.фм.н., профессор		А.И. Михайлов
должность, ученая степень, ученое звание	подпись, дата	инициалы, фамилия
Консультант		
зав. лабораторией		И.О. Кожевников
должность, ученая степень, ученое звание	подпись, дата	инициалы, фамилия
Зав. кафедрой		
д.фм.н., профессор		А.И. Михайлов
должность, ученая степень, ученое звание	подпись, дата	инициалы, фамилия

ВВЕДЕНИЕ

Арсенид галлия один из базовых материалов для полупроводниковой электроники [1]. В последнее время в качестве исходного материала для подложек интегральных схем все чаще стали применять полупроводниковые соединения типа $A^{III}B^V$, а именно арсенид галлия, поскольку он имеет более лучшие характеристики, нежели кремний.

Актуальность работы. Исследования структур на основе GaAs пользуются большой популярностью, так как он обладает наиболее лучшими характеристиками по сравнению с кремнием. Для исследований уже существуют промышленные образцы, но их производство занимает большое количество времени и материальных затрат. Поэтому появилась потребность в более простом и доступном методе изготовления структур с аналогичными характеристиками.

Цель работы: Исследование возможности изготовления преобразователя свет-частота на основе планарно-эпитаксиальных мезаструктур высокоомного арсенида галлия в лабораторных условиях.

Исходя из цели данной работы, были поставлены следующие задачи:

- 1. Измерение темновых и световых вольт-амперных характеристик образцов, изготовленных промышленным методом фотолитографии.
- 2. Определение влияния величины межконтактного расстояния на вид BAX.
- 3. Изготовление тестовых образцов планарных мезаструктур высокоомного арсенида галлия в лабораторных условиях.
- 4. Сравнение характеристик лабораторных образцов с образцами промышленного изготовления.

Дипломная работа занимает 45 страниц, имеет 25 рисунков и 10 таблиц.

Обзор составлен по 21 информационному источнику.

Во введение рассматривается актуальность работы, устанавливается цель и выдвигаются задачи для достижения поставленной цели.

Первый раздел представляет собой литературный обзор и состоит из следующих подразделов: арсенид галлия, преимущества GaAs, приборы на основе GaAs, отрицательная дифференциальная проводимость, химическая чистка образов перед напылением, технология арсенида галлия, способы напыления металлических пленок на подложку, формирование омического контакта к арсениду галлия, метод магнетронного распыления, химическое травление.

Во втором разделе работы представлены экспериментальные результаты и их обсуждение. Он включает в себя такие подразделы, как параметры используемых материалов И технология изготовления промышленных образцов, анализ отрицательной дифференциальной проводимости (ОДП) на характеристике, определение вольт-амперной напряжения открытия дифференциального сопротивления, получение экспериментальных образцов в лабораторных условиях, подготовка тестовых образцов, напыление металлического слоя Ті, обработка образца химическим травлением.

Основное содержание работы

Раздел 1. Литературный обзор

Преимущества GaAs. Арсенид галлия по отдельным свойствам может превосходить кремний. Приборы на основе GaAs имеют сравнительно невысокую чувствительность к перегреву из-за более широкой запрещенной зоны [2]. К тому же, в них прослеживается тенденция образовывать меньше шумов в электронных схемах, чем у кремниевых приборов, преимущественно на высоких частотах [3]. Одним из важных достоинств GaAs является то, что он имеет прямую запрещенную зону, следовательно, GaAs может быть использован для поглощения и излучения света. Кремний, напротив, имеет непрямую запрещенную зону и потому достаточно плохо излучает свет.

Приборы на основе GaAs. Различные приборы, разработанные на GaAs и AlGaAs, которые могут использоваться при создании аналоговых и цифровых интегральных схем имеют самые разные назначения. Элементом, который наиболее часто используется при разработке как цифровых, так и аналоговых

интегральных схем, безусловно, является полевой транзистор на GaAs [4].

Приборы на GaAs могут быть разделены на несколько укрупненных групп: диоды, полевые транзисторы, биполярные транзисторы, оптические приборы.

Отрицательная дифференциальная проводимость. В длинных высокоомных планарно-эпитаксиальных структурах на основе *n*-GaAs возможно наблюдение отрицательной дифференциальной проводимости [5]. ОДП на ВАХ означает, что при данном напряжении происходит выброс электронов из ловушек за счет эффекта сильного поля (вероятнее всего туннелирования) и повторное их заполнение.

Химическая чистка образов перед напылением. Существует жидкостная и сухая очистка в жидких, газовых и плазменных технологических средах. При этом механизмы процессов удаления загрязнений могут быть физическими (механическое удаление), химическими (удаление загрязнений посредством химических реакций), а также комбинированными (использование обоих методов удаления загрязнений, например, при ионной И плазмохимической очистке) [6].

Способы напыления металлических пленок на подложку. Распространенным методом напыления металлических пленок на подложки является метод свободной маски [7]. Он основан на экранировании части подложки от потока частиц напыляемого вещества при помощи специальной свободной маски. Также, существует метод контактной маски. Контактная маска наносится непосредственно на подложку и удерживается на ней благодаря адгезии. Метод обеспечивает высокую точность и четкость края, и его можно применять как для вакуумного, так и для катодного методов распыления.

Также, существует метод безмасочной лазерной литографии. На 1-м этапе металлическую пленку напыляют без использования маски. На 2-м этапе излучение лазера используют для испарения металлического покрытия на поверхности подложки на заданном участке. На 3-м этапе дальнейшее удаление

покрытия осуществляется химическим способом. В итоге остаются только необходимые участки напыленного покрытия.

Формирование омического контакта к арсениду галлия. Важнейшими требованиями к омическому контакту являются его низкое сопротивление, а также стабильная температура и низкая шероховатость поверхности. Для создания омических контактов к гетероструктурам на основе GaAs зачастую используют тонкие слои Au, Ge, Ag, Ni, Pt, Pd, Ti и другие материалы [8].

Метод магнетронного распыления. Магнетронное распыление относят к методам распыления материалов ионной бомбардировкой [9]. Основными частями установки являются анод, катод, который изготовлен из напыляемого материала, магнитная система и система водяного охлаждения.

Химическое травление. Химическое травление полупроводниковых подложек заключается в растворении их поверхностного слоя в результате воздействия на них кислотных или щелочных травителей [10]. Существует несколько основных методов химического травления: изотропное травление, анизотропное травление, селективное травление, локальное травление, послойное травление.

Раздел 2. Экспериментальные результаты и их обсуждение

Параметры используемых материалов и технология изготовления промышленных образцов. В данной работе использовались планарно-эпитаксиальные структуры на основе высокоомного арсенида галлия (рисунок 1).

Рисунок 1 — Планарно-эпитаксиальная структура высокоомного GaAs: 1 — омический контакт; 2 — эпитаксиальный слой n; 3 — эпитаксиальный слой n^+ ; 4 — буферный слой n_6 ; 5 — подложка из GaAs

Промышленные образцы изготавливались на предприятии ЗАО НПЦ "АЛМАЗ-ФАЗОТРОН" на основе пластин марки САГ-2БК, представляющих собой сформированные на полуизолирующей подложке из GaAs эпитаксиальные слои n и n^+ проводимости. Исходные пластины подвергались химической и плазмохимической обработке, после чего на их поверхности формировались контакты на основе AuGe/Ni/Au методом фотолитографии и термообработки при 460° С в атмосфере азота.

На установке Agilent B1500A в составе зондовой станции CASCADE MICROTECH РМ5 была выполнена серия измерений вольт-амперных характеристик двух промышленных образцов. ВАХ снимались в темноте и при освещении видимым светом.

Анализ отрицательной дифференциальной проводимости (ОДП) на вольт-амперной характеристике. В результате измерений были отобраны ВАХ с ярко выраженными областями ОДП. Из полученых ВАХ можно определить количество участков ОДП и напряжения на которых они наблюдаются.

Определение напряжения открытия и дифференциального сопротивления. Были отобраны графики, на которых отсутствует ОДП, но для них также определялись дифференциальное сопротивление и напряжение открытия, но в допороговом диапазоне напряжений ($U < U_{OД\Pi}$).

Глубина проникновения поля (напряжение открытия U_o) оценивалась по пересечению касательной к наиболее прямому участку ВАХ и осью абсцисс.

Дифференциальное сопротивление определялось по углу наклона касательной, проведенной к наиболее прямому участку ВАХ. Угол наклона касательной рассчитывался из отношения 1.

$$R_{\mu \phi \phi} = \frac{\Delta U}{\Delta I} = \frac{(U_2 - U_1)}{(I_2 - I_1)} = tg\alpha, \tag{1}$$

где ΔU — приращение напряжения;

 ΔI — приращение тока.

Усредненные результаты определения напряжения открытия и дифференциального сопротивления представлены в таблице 1.

Таблица 1 — Результаты определения напряжения открытия и дифференциального сопротивления

	Усредненное U ₀ , В	Усредненное дифф. сопр., кОм	
Доверительный	60 мкм		
интервал	20,05±1,3	11,24±3	
	200 мкм		
	60,95±1,66	7±3,86	

Из таблицы видно, что при увеличении межконтактного расстояния напряжение открытия увеличивается пропорционально этому расстоянию. То есть:

$$\frac{200 \text{ MKM}}{60 \text{ MKM}} \approx 3.3,$$

$$\frac{60.95 \text{ B}}{20.05 \text{ B}} \approx 3.04.$$

Можно получить грубую закономерность, что при увеличении межконтактного расстояния величина U_o увеличивается пропорционально этому расстоянию. При этом дифференциальное сопротивление никак не зависит от межконтактного расстояния.

Получение экспериментальных образцов в лабораторных условиях. Основной целью является получение структур с параметрами, схожими с параметрами структур, полученных промышленным методом фотолитографии. Для этого планировалось реализовать два метода получения мезаструктур в виде омических контактов к высокоомной подложке пластин марки САГ-2БК:

1) формирование металлических площадок на поверхности исходных пластин и дальнейшее химическое стравливание незакрытых металлом областей полупроводника до подложки.

2) формирование металлического слоя на всей поверхности исходных пластин и дальнейшее формирование участков мезаструктуры лазерной абляцией металла вместе с полупроводниковыми низкоомными слоями n^+ и n.

В качестве металла были выбраны Ті и Al, но в данной работе будут представлены результаты, полученные только для титана. В связи с этим, исходная пластина была разделена на 4 сегмента, 2 из которых остались на эксперимент с Al.

Подготовка тестовых образцов. Подготовка эпитаксиальных пластин GaAs осуществлялась следующим образом: в перекисно-аммиачном растворе $H_2O:H_2O_2:NH_4OH$ в пропорциональном соотношении 3:2:1 пластина очищалась в течение 5 секунд. Затем очищенная пластина промывалась дистиллированной водой.

Напыление металлического слоя Ті. Нанесение металлического слоя титана на эпитаксиальные пластины GaAs осуществлялось методом магнетронного распыления. Металл наносился со стороны низкоомного слоя для получения в дальнейшем омических контактов. Напыление металлического слоя титана производилось в течение 10 минут. Толщина напыленного слоя составила порядка 0,5 мкм. В результате напыления с использованием маски ширина межконтактного расстояния h составила 200 мкм и 500 мкм. Полученный образец с использованием теневой маски приведен на рисунке 2.

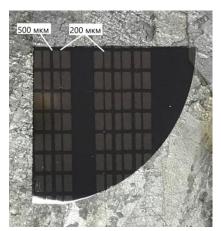


Рисунок 2 – Образец после напыления Ті с использованием теневой маски Обработка образца химическим травлением. Процесс химического травления осуществлялся в течение 44 с (4 цикла травления по 10 с и 1 цикл

травления 4 с) в растворе $NH_4OH:H_2O:H_2O_2$ в пропорциональном соотношении компонентов 1:40:1.

После каждого цикла травления осуществлялось измерение вольтамперной характеристики полученного образца. Полученные вольтамперные характеристики образца, снятые на зонах с межконтактным расстоянием 500 мкм, показаны на рисунке 3.

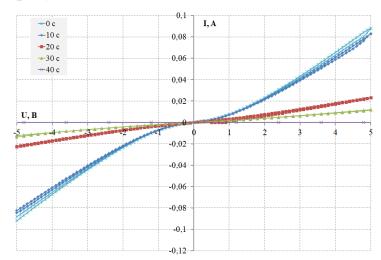


Рисунок 3 — ВАХ экспериментального образца после травления, h = 500 мкм

Из зависимости на рисунке 3 видно как меняется сопротивление структуры при низкой напряженности поля в зависимости от времени травления. По этому сопротивлению можно примерно оценивать достижение необходимой глубины травления.

В таблице 2 показаны результаты нахождения сопротивления.

Таблица 2 – Результаты определения сопротивления структуры

Время травления, с	Усредненное сопротивление структуры, Ом	
0	43,65	
10	47,49	
20	187,15	
30	355,09	
40	$2,16\cdot10^{7}$	

Из таблицы 2 видно, что с увеличением времени травления сопротивление структуры и глубина травления растут.

Чтобы определить, достигнута нужная глубина травления, ЛИ использовалось сравнение измеренного сопротивления из рисунка 3 с теоретическим сопротивлением для лабораторного образца. Теоретическое сопротивление рассчитывалось с использованием паспортных параметров Теоретическое сопротивление исходных пластин. ДЛЯ межконтактного расстояния 200 мкм равнялось $2 \cdot 10^5$ Ом. При этом измеренное сопротивление равнялось $2,35\cdot10^5$ Ом. На рисунке 4 показана зависимость сопротивления от времени травления.

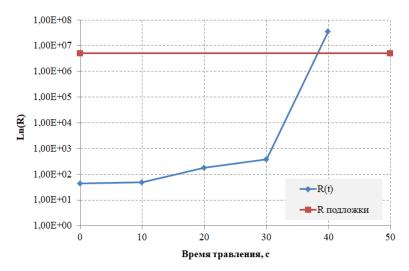


Рисунок 4 — Зависимость сопротивления от времени травления Из графика видно, что нужная глубина травления была достигнута.

Далее были сняты ВАХ (темновая и при освещении) образца на зонах с межконтактным расстоянием 200 мкм. Полученные графики показаны на рисунке 5.

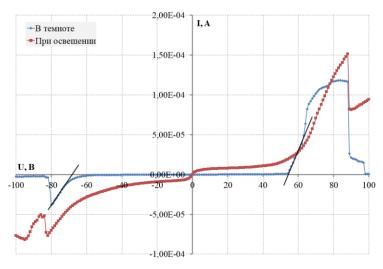


Рисунок 5 — BAX экспериментального образца после травления, h = 200 мкм

На рисунке 5 наблюдаются участки ОДП, что позволяет сказать то, что изготовление преобразователя свет-частота на основе планарно-эпитаксиальных мезаструктур высокоомного арсенида галлия в лабораторных условиях представляется возможным.

Далее осуществлялось сравнение характеристик промышленных образцов и образцов, полученных в лабораторных условиях (таблица 3-4).

Таблица 3 — Сравнение напряжения открытия образцов и образцов, полученных в лабораторных условиях

Напряжение открытия			
200 мкм			
U _о (завод), В	60,95		
U _o (лаб.), В	62		

Таблица 4 — Сравнение дифференциального сопротивления образцов и образцов, полученных в лабораторных условиях

Дифференциальное сопротивление				
200 мкм				
R(завод), кОм	7			
R(лаб), кОм	341	235		

Из таблицы видно, что значения напряжения открытия лабораторного и промышленного образцов отличаются незначительно. Однако дифференциальное сопротивление лабораторного образца оказалось на два порядка больше, чем промышленного, что можно связать с тем, что при изготовлении образцов использовались разные материалы контактов, а также с погрешностью в ±40 мкм при измерении межконтактного расстояния лабораторного образца.

ЗАКЛЮЧЕНИЕ

В ходе измерения темновых и световых вольт-амперных характеристик образцов, изготовленных промышленным методом фотолитографии было определено влияние межконтактного расстояния на U_o . Для 60 мкм — 20,05 В, для 200 мкм — 60,95 В. При увеличении межконтактного расстояния U_o увеличивается пропорционально этому расстоянию. Дифференциальное сопротивление не зависит от межконтактного расстояния.

Изготовлены тестовые образцы мезаструктур высокоомного GaAs методом магнетронного напыления с использованием теневой маски и последующим травлением. В результате h составила 200 мкм и 500 мкм. На ВАХ, снятой на расстоянии 200 мкм, были обнаружены участки ОДП, следовательно изготовление преобразователя свет-частота на основе планарно-эпитаксиальных мезаструктур высокоомного арсенида галлия в лабораторных условиях представляется возможным.

При увеличении межконтактного расстояния вероятность возникновения ОДП на ВАХ уменьшается. Это говорит о том, что оптимальным значением межконтактного расстояния является 50-60 мкм. При этом получить рабочую структуру с межконтактным расстоянием 200 мкм масочным методом возможно, но будет наблюдаться большая погрешность в значениях напряжения открытия и дифференциального сопротивления.

Значения напряжения открытия лабораторного и промышленного образцов отличаются незначительно. Однако дифференциальное сопротивление лабораторного образца на два порядка больше, чем промышленного. При изготовлении образцов использовались разные материалы контактов, а также с погрешностью в ± 40 мкм при измерении межконтактного расстояния лабораторного образца.

Плюсами обоих методик, в сравнении с фотолитографией является малое число операции и количество реактивов, а также гибкость в отношении изменения топологии, что является особенно важным при проведении исследований данных структур.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Гусев, В. Г. Электроника / В. Г. Гусев, Ю. М. Гусев. М.: Изд-во Высшая школа, 1991. 622 с.
- 2 Ди Лоренцо, Д. В. Полевые транзисторы на арсениде галлия. Принципы работы и технология изготовления / Д. В. Ди Лоренцо. М.: Радио и связь, 1988. 496 с.
- 3 Шалимова, К. В. Физика полупроводников / К. В. Шалимова. М.: Энергоатомиздат, 1985. 392 с.
- 4 Зи, С. Физика полупроводниковых приборов / С. Зи. М.: Мир, 1984. 456 с.
- 5 Садыков, Э. К. Явления неустойчивости в полупроводниках: нарушение закона Ома, эффект Ганна / Э. К. Садыков. Казань: Казан. ун-т, 2015. 14 с.
- 6 Ридли, Б. К. Исследование механизма образования медленных доменов и отрицательного сопротивления в арсениде галлия / Б. К. Ридли, Ф. С. Шишияну // ФТП. 1973. С. 905–912.
- 7 Холодкова, Н. В. Технология материалов электронной техники: лабораторный практикум / Н. В. Холодкова, Т. Г. Шикова. Иваново: Иван. гос. хим.-технол. ун-т, 2013. 181 с.
- 8 Иванов, В. Н., Морфология и структура вплавных омических контактов к электронному арсениду галлия. / В. Н. Иванов, Л. Е. Коваленко, Т. С. Сумская, В. Н. Челюбеев, В. М. Яшник // Электронная техника. 1988. 49-53.
- 9 Данилин, Б. С. Магнетронные распылительные системы: учебное пособие / Б. С. Данилин, В. К. Сырчин. М.: Изд-во Радио и связь, 1982. 72 с.
- 10 Савиных, В. Л. Электроника: учебное пособие / В. Л. Савиных. Новосибирск: СибГУТИ, 2004. 87 с.